Observation of many-body Fock space dynamics in two dimensions
- URL: http://arxiv.org/abs/2211.05803v1
- Date: Thu, 10 Nov 2022 19:00:21 GMT
- Title: Observation of many-body Fock space dynamics in two dimensions
- Authors: Yunyan Yao, Liang Xiang, Zexian Guo, Zehang Bao, Yong-Feng Yang,
Zixuan Song, Haohai Shi, Xuhao Zhu, Feitong Jin, Jiachen Chen, Shibo Xu,
Zitian Zhu, Fanhao Shen, Ning Wang, Chuanyu Zhang, Yaozu Wu, Yiren Zou,
Pengfei Zhang, Hekang Li, Zhen Wang, Chao Song, Chen Cheng, Rubem Mondaini,
H. Wang, J. Q. You, Shi-Yao Zhu, Lei Ying, and Qiujiang Guo
- Abstract summary: We experimentally employ a new paradigm on a superconducting quantum processor, exploring such elusive questions from a Fock space view.
By observing the wave packet propagating in Fock space and the emergence of a statistical ergodic ensemble, we reveal a fresh picture for characterizing representative many-body dynamics.
Our work unveils a new perspective of exploring many-body physics in Fock space, demonstrating its practical applications on contentious MBL aspects.
- Score: 13.93816179653311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum many-body simulation provides a straightforward way to understand
fundamental physics and connect with quantum information applications. However,
suffering from exponentially growing Hilbert space size, characterization in
terms of few-body probes in real space is often insufficient to tackle
challenging problems such as quantum critical behavior and many-body
localization (MBL) in higher dimensions. Here, we experimentally employ a new
paradigm on a superconducting quantum processor, exploring such elusive
questions from a Fock space view: mapping the many-body system onto an
unconventional Anderson model on a complex Fock space network of many-body
states. By observing the wave packet propagating in Fock space and the
emergence of a statistical ergodic ensemble, we reveal a fresh picture for
characterizing representative many-body dynamics: thermalization, localization,
and scarring. In addition, we observe a quantum critical regime of anomalously
enhanced wave packet width and deduce a critical point from the maximum wave
packet fluctuations, which lend support for the two-dimensional MBL transition
in finite-sized systems. Our work unveils a new perspective of exploring
many-body physics in Fock space, demonstrating its practical applications on
contentious MBL aspects such as criticality and dimensionality. Moreover, the
entire protocol is universal and scalable, paving the way to finally solve a
broader range of controversial many-body problems on future larger quantum
devices.
Related papers
- The Fock-space landscape of many-body localisation [0.0]
This article reviews recent progress in understanding the physics of many-body localisation (MBL) in disordered and interacting quantum many-body systems.
We map the dynamics of the many-body system onto that of a fictitious single particle on the high-dimensional, correlated and disordered Fock-space graph.
We discuss in detail the nature of eigenstate correlations on the Fock space, both static and dynamic, and in the ergodic and many-body localised phases as well as in the vicinity of the MBL transition.
arXiv Detail & Related papers (2024-08-22T18:52:21Z) - Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Revealing the finite-frequency response of a bosonic quantum impurity [0.15729203067736902]
Quantum impurities are ubiquitous in condensed matter physics and constitute the most stripped-down realization of many-body problems.
We build a quantum simulator of the boundary sine-Gordon model, a non-trivial bosonic impurity problem.
This work opens exciting perspectives for the future such as quantifying quantum entanglement in the vicinity of a quantum critical point.
arXiv Detail & Related papers (2022-08-05T09:13:33Z) - Quantum field simulator for dynamics in curved spacetime [0.0]
We show a quantum field simulator in a two-dimensional Bose-Einstein condensate with a trap and adjustable interaction strength.
We explicitly show the realisation of spacetimes with positive and negative spatial curvature by wave packet propagation.
We find quantitative agreement with new analytical predictions for different curvatures in time and space.
arXiv Detail & Related papers (2022-02-21T17:52:50Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.