Probing critical phenomena in open quantum systems using atom arrays
- URL: http://arxiv.org/abs/2402.15376v1
- Date: Fri, 23 Feb 2024 15:21:38 GMT
- Title: Probing critical phenomena in open quantum systems using atom arrays
- Authors: Fang Fang, Kenneth Wang, Vincent S. Liu, Yu Wang, Ryan Cimmino, Julia
Wei, Marcus Bintz, Avery Parr, Jack Kemp, Kang-Kuen Ni and Norman Y. Yao
- Abstract summary: At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
- Score: 3.365378662696971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At continuous phase transitions, quantum many-body systems exhibit
scale-invariance and complex, emergent universal behavior. Most strikingly, at
a quantum critical point, correlations decay as a power law, with exponents
determined by a set of universal scaling dimensions. Experimentally probing
such power-law correlations is extremely challenging, owing to the complex
interplay between decoherence, the vanishing energy gap, and boundary effects.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical
ground states of both a one-dimensional ring and a two-dimensional square
lattice. By accounting for and tuning the openness of our quantum system, which
is well-captured by the introduction of a single phenomenological length scale,
we are able to directly observe power-law correlations and extract the
corresponding scaling dimensions. Moreover, in two dimensions, we observe a
decoupling between phase transitions in the bulk and on the boundary, allowing
us to identify two distinct boundary universality classes. Our work
demonstrates that direct adiabatic preparation of critical states in quantum
simulators can complement recent approaches to studying quantum criticality
using the Kibble-Zurek mechanism or digital quantum circuits.
Related papers
- Entanglement scaling and criticality of quantum many-body systems in canonical quantization picture using tensor network [0.0]
This work investigates the quantum entanglement and criticality of the ground-state wave-functions of infinitely-many coupled quantum oscillators (iCQOs)
By extending the imaginary-time evolution algorithm with translationally-invariant functional tensor network, we simulate the ground state of iCQOs with the presence of two- and three-body couplings.
We reveal the logarithmic scaling law of entanglement entropy (EE) and the scaling law of correlation length against the virtual bond $chi$ at the dividing point of physical and non-physical regions.
arXiv Detail & Related papers (2024-10-31T04:20:49Z) - Phonon Dephasing, Entanglement and Exchange-Only Toffoli Gate Sequence in Quantum Dot Spin Chains [0.0]
Quantum dot spin chain system is vital for quantum simulation and studying collective electron behaviors.
Chapter 1 introduces key concepts, focusing on the extended Hubbard model, double quantum dot systems, and electron-phonon coupling.
Chapter 3 investigates entanglement entropy in a multielectron quantum dot spin chain described by the extended Hubbard model.
Chapter 4 explores operation sequences in a nine-spin, nine-quantum-dot system defined by the Heisenberg model.
arXiv Detail & Related papers (2024-09-23T06:26:08Z) - Quantum Supercritical Crossovers with Dynamical Singularity [2.9659182523095047]
We study the quantum Ising model and Rydberg atom array through tensor network calculations and scaling analyses.
Enclosed by the two crossover lines, there exist supercritical quantum states with universal behaviors in correlations and entanglement.
We propose that the Rydberg atom array offers an ideal platform for studying the quantum supercritical crossovers and measuring the critical exponents.
arXiv Detail & Related papers (2024-07-07T17:52:02Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Characterizing quantum criticality and steered coherence in the XY-Gamma
chain [0.37498611358320727]
We analytically solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation.
In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral correlations.
We derive explicit scaling forms of the excitation gap near the quantum critical points.
arXiv Detail & Related papers (2022-06-08T15:28:10Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.