Predictive simulations of the dynamical response of mesoscopic devices
- URL: http://arxiv.org/abs/2502.12960v1
- Date: Tue, 18 Feb 2025 15:44:40 GMT
- Title: Predictive simulations of the dynamical response of mesoscopic devices
- Authors: Samuel Boutin, Torsten Karzig, Tareq El Dandachi, Ryan V. Mishmash, Jan Gukelberger, Roman M. Lutchyn, Bela Bauer,
- Abstract summary: We describe a general framework to simulate the low-energy quantum dynamics of such complex systems.
We demonstrate the methods introduced in this paper on the example of a single quantum dot coupled to a topological superconductor.
- Score: 0.0
- License:
- Abstract: As the complexity of mesoscopic quantum devices increases, simulations are becoming an invaluable tool for understanding their behavior. This is especially true for the superconductor-semiconductor heterostructures used to build Majorana-based topological qubits, where quantitatively understanding the interplay of topological superconductivity, disorder, semiconductor quantum dots, Coulomb blockade and noise has been essential for progress on device design and interpretation of measurements. In this paper, we describe a general framework to simulate the low-energy quantum dynamics of such complex systems. We illustrate our approach by computing the dispersive gate sensing (DGS) response of quantum dots coupled to topological superconductors. We start by formulating the DGS response as an open-system quantum dynamics problem, which allows a consistent treatment of drive backaction as well as quantum and classical noise. For microscopic quantum problems subject to Coulomb-blockade, where a direct solution in the exponentially large many-body Hilbert space would be prohibitive, we introduce a series of controlled approximations that incorporate ideas from tensor network theory and quantum chemistry to reduce this Hilbert space to a few low-energy degrees of freedom that accurately capture the low-energy quantum dynamics. We demonstrate the methods introduced in this paper on the example of a single quantum dot coupled to a topological superconductor and a microscopic realization of the fermion parity readout setup of Aghaee et al. arXiv:2401.09549 (2024).
Related papers
- Efficiently measuring $d$-wave pairing and beyond in quantum gas microscopes [0.0]
We introduce a protocol for measuring a broad class of observables in fermionic quantum gas microscopes.
The protocol only requires global controls followed by site-resolved particle number measurements.
We further optimize our pulses for robustness to experimental imperfections such as lattice inhomogeneity.
arXiv Detail & Related papers (2024-12-17T18:58:32Z) - Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Simulation of interaction-induced chiral topological dynamics on a
digital quantum computer [3.205614282399206]
Chiral edge states are sought-after as paradigmatic topological states relevant to quantum information processing and electron transport.
We demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling.
By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers.
arXiv Detail & Related papers (2022-07-28T18:00:29Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.