論文の概要: Efficient Domain Coverage for Vehicles with Second-Order Dynamics via
Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2211.05952v4
- Date: Mon, 16 Oct 2023 09:13:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 06:38:41.860802
- Title: Efficient Domain Coverage for Vehicles with Second-Order Dynamics via
Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習による2次ダイナミクスをもつ車両のドメイン被覆
- Authors: Xinyu Zhao, Razvan C. Fetecau, Mo Chen
- Abstract要約: 本稿では,2次動的エージェントを含む多エージェント効率ドメインカバレッジ問題に対する強化学習(RL)手法を提案する。
提案するネットワークアーキテクチャには,LSTMと自己注意が組み込まれている。
- 参考スコア(独自算出の注目度): 9.939081691797858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative autonomous multi-agent systems covering a specified area have
many potential applications, such as UAV search and rescue, forest fire
fighting, and real-time high-resolution monitoring. Traditional approaches for
such coverage problems involve designing a model-based control policy based on
sensor data. However, designing model-based controllers is challenging, and the
state-of-the-art classical control policy still exhibits a large degree of
sub-optimality. In this paper, we present a reinforcement learning (RL)
approach for the multi-agent efficient domain coverage problem involving agents
with second-order dynamics. Our approach is based on the Multi-Agent Proximal
Policy Optimization Algorithm (MAPPO). Our proposed network architecture
includes the incorporation of LSTM and self-attention, which allows the trained
policy to adapt to a variable number of agents. Our trained policy
significantly outperforms the state-of-the-art classical control policy. We
demonstrate our proposed method in a variety of simulated experiments.
- Abstract(参考訳): 特定の地域をカバーする協調的な自律型マルチエージェントシステムには、UAV探索と救助、森林火災戦、リアルタイム高解像度監視など、多くの潜在的な応用がある。
このようなカバレッジ問題に対する従来のアプローチには、センサデータに基づいたモデルベースの制御ポリシの設計が含まれる。
しかし、モデルベースのコントローラの設計は困難であり、最先端の古典的制御ポリシーは依然としてかなりの準最適性を示している。
本稿では,2次ダイナミクスを持つエージェントを含むマルチエージェント効率的なドメインカバレッジ問題に対する強化学習(rl)手法を提案する。
提案手法は,MAPPO(Multi-Agent Proximal Policy Optimization Algorithm)に基づく。
提案するネットワークアーキテクチャには,LSTMと自己注意が組み込まれている。
我々の訓練された政策は、最先端の古典的な制御政策を著しく上回っている。
提案手法を様々なシミュレーション実験で実証する。
関連論文リスト
- Effective Multi-Agent Deep Reinforcement Learning Control with Relative
Entropy Regularization [6.441951360534903]
複数のエージェントによって制御される様々なシナリオにおいて、限られた能力とサンプル効率の問題に取り組むために、Multi-Agent Continuous Dynamic Policy Gradient (MACDPP)が提案された。
複数のエージェントのポリシー更新の不整合を緩和するために、アクター・クリティカル(AC)構造を持つ分散実行トレーニング(CTDE)フレームワークに相対エントロピー正規化を導入する。
論文 参考訳(メタデータ) (2023-09-26T07:38:19Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
本研究の目的は,モデルベース学習によるマルチエージェント制御のデータ効率の向上である。
エージェントが協力的であり、隣人とのみローカルに通信するネットワークシステムについて検討する。
提案手法では,各エージェントが将来の状態を予測し,通信によって予測をブロードキャストする動的モデルを学習し,その後,モデルロールアウトに基づいてポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-07-13T23:52:14Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
深層強化学習(DRL)はエージェントと環境の相互作用を通じて多エージェント協調に有望なアプローチを提供する。
従来のDRLソリューションは、ポリシー探索中に連続的なアクション空間を持つ複数のエージェントの高次元に悩まされる。
効率的な政策探索のための高レベル意思決定と低レベル個別制御を用いた階層型強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-25T19:09:29Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
本稿では,次世代無線ネットワーク(HetNets)における共同最適無線アクセス技術(RATs)の割り当てと電力割り当てによるコストアウェアダウンリンク総和率の問題について考察する。
本稿では,DeepRAT(DeepRAT)と呼ばれる階層型多エージェント深層強化学習(DRL)フレームワークを提案する。
特に、DeepRATフレームワークは、問題を2つの主要なステージに分解する: 単一エージェントのDeep Q Networkアルゴリズムを実装するRATs-EDs割り当てステージと、マルチエージェントのDeep Deterministic Policy Gradientを利用するパワー割り当てステージである。
論文 参考訳(メタデータ) (2022-02-28T09:49:44Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
MPCのためのポリシ・フォー・モデル・予測制御フレームワークを提案する。
具体的には、パラメータ化コントローラとしてMPCを定式化し、パラメータ化の難しい決定変数を高レベルポリシーとして表現する。
シミュレーションと実環境の両方において,我々の制御器が堅牢かつリアルタイムに制御性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2021-12-07T17:39:24Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Imitation Learning from MPC for Quadrupedal Multi-Gait Control [63.617157490920505]
本稿では,歩行ロボットの複数の歩行を模倣する単一ポリシーを学習する学習アルゴリズムを提案する。
モデル予測制御によって導かれる模擬学習のアプローチであるMPC-Netを使用し、拡張します。
ハードウェアに対する我々のアプローチを検証し、学習したポリシーが教師に取って代わって複数の歩留まりを制御できることを示します。
論文 参考訳(メタデータ) (2021-03-26T08:48:53Z) - Learning High-Level Policies for Model Predictive Control [54.00297896763184]
Model Predictive Control (MPC)は、ロボット制御タスクに対する堅牢なソリューションを提供する。
ニューラルネットワークの高レベルポリシーを学習するための自己教師付き学習アルゴリズムを提案する。
提案手法は, 標準的なMPCでは困難な状況に対処できることを示す。
論文 参考訳(メタデータ) (2020-07-20T17:12:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。