JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing
- URL: http://arxiv.org/abs/2211.05963v1
- Date: Fri, 11 Nov 2022 02:20:30 GMT
- Title: JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing
- Authors: Chunyan Zeng, Jiaxiang Ye, Zhifeng Wang, Nan Zhao, Minghu Wu
- Abstract summary: Two sub-networks, which are the sampling sub-network and the reconstruction sub-network, are included in the proposed framework.
In the reconstruction sub-network, a cascade network combining stacked denoising autoencoder (SDA) and convolutional neural network (CNN) is designed to reconstruct signals.
This framework outperforms many other state-of-the-art methods, especially at low sampling rates.
- Score: 8.902545322578925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most Deep Learning (DL) based Compressed Sensing (DCS) algorithms adopt a
single neural network for signal reconstruction, and fail to jointly consider
the influences of the sampling operation for reconstruction. In this paper, we
propose unified framework, which jointly considers the sampling and
reconstruction process for image compressive sensing based on well-designed
cascade neural networks. Two sub-networks, which are the sampling sub-network
and the reconstruction sub-network, are included in the proposed framework. In
the sampling sub-network, an adaptive full connected layer instead of the
traditional random matrix is used to mimic the sampling operator. In the
reconstruction sub-network, a cascade network combining stacked denoising
autoencoder (SDA) and convolutional neural network (CNN) is designed to
reconstruct signals. The SDA is used to solve the signal mapping problem and
the signals are initially reconstructed. Furthermore, CNN is used to fully
recover the structure and texture features of the image to obtain better
reconstruction performance. Extensive experiments show that this framework
outperforms many other state-of-the-art methods, especially at low sampling
rates.
Related papers
- Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences [0.0]
In this work, we apply double deep Q-learning and REINFORCE algorithms to learn the sampling strategy for dynamic image reconstruction.
We consider the data in the format of time series, and the reconstruction method is a pre-trained autoencoder-typed neural network.
We present a proof of concept that reinforcement learning algorithms are effective to discover the optimal sampling pattern.
arXiv Detail & Related papers (2023-08-28T23:55:23Z) - A Lightweight Recurrent Learning Network for Sustainable Compressed
Sensing [27.964167481909588]
We propose a lightweight but effective deep neural network based on recurrent learning to achieve a sustainable CS system.
Our proposed model can achieve a better reconstruction quality than existing state-of-the-art CS algorithms.
arXiv Detail & Related papers (2023-04-23T14:54:15Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Self-supervised Neural Networks for Spectral Snapshot Compressive
Imaging [15.616674529295366]
We consider using untrained neural networks to solve the reconstruction problem of snapshot compressive imaging (SCI)
In this paper, inspired by the untrained neural networks such as deep image priors (DIP) and deep decoders, we develop a framework by integrating DIP into the plug-and-play regime, leading to a self-supervised network for spectral SCI reconstruction.
arXiv Detail & Related papers (2021-08-28T14:17:38Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA)
Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames.
Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.
arXiv Detail & Related papers (2020-10-02T11:40:09Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z) - Geometric Approaches to Increase the Expressivity of Deep Neural
Networks for MR Reconstruction [41.62169556793355]
Deep learning approaches have been extensively investigated to reconstruct images from accelerated magnetic resonance image (MRI) acquisition.
It is not clear how to choose a suitable network architecture to balance the trade-off between network complexity and performance.
This paper proposes a systematic geometric approach using bootstrapping and subnetwork aggregation to increase the expressivity of the underlying neural network.
arXiv Detail & Related papers (2020-03-17T14:18:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.