Deep Generative Methods and Tire Architecture Design
- URL: http://arxiv.org/abs/2507.11639v1
- Date: Tue, 15 Jul 2025 18:24:23 GMT
- Title: Deep Generative Methods and Tire Architecture Design
- Authors: Fouad Oubari, Raphael Meunier, Rodrigue Décatoire, Mathilde Mougeot,
- Abstract summary: This study is a complete study of five representative models on industrial tire architecture generation.<n>Our evaluation spans three key industrial scenarios: (i) unconditional generation of complete multi-component designs, (ii) component-conditioned generation, and (iii) dimension-constrained generation.<n>We introduce categorical inpainting, a mask-aware reverse diffusion process that preserves known labels without requiring additional training.
- Score: 1.3124513975412255
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As deep generative models proliferate across the AI landscape, industrial practitioners still face critical yet unanswered questions about which deep generative models best suit complex manufacturing design tasks. This work addresses this question through a complete study of five representative models (Variational Autoencoder, Generative Adversarial Network, multimodal Variational Autoencoder, Denoising Diffusion Probabilistic Model, and Multinomial Diffusion Model) on industrial tire architecture generation. Our evaluation spans three key industrial scenarios: (i) unconditional generation of complete multi-component designs, (ii) component-conditioned generation (reconstructing architectures from partial observations), and (iii) dimension-constrained generation (creating designs that satisfy specific dimensional requirements). To enable discrete diffusion models to handle conditional scenarios, we introduce categorical inpainting, a mask-aware reverse diffusion process that preserves known labels without requiring additional training. Our evaluation employs geometry-aware metrics specifically calibrated for industrial requirements, quantifying spatial coherence, component interaction, structural connectivity, and perceptual fidelity. Our findings reveal that diffusion models achieve the strongest overall performance; a masking-trained VAE nonetheless outperforms the multimodal variant MMVAE\textsuperscript{+} on nearly all component-conditioned metrics, and within the diffusion family MDM leads in-distribution whereas DDPM generalises better to out-of-distribution dimensional constraints.
Related papers
- MMaDA: Multimodal Large Diffusion Language Models [47.043301822171195]
We introduce MMaDA, a novel class of multimodal diffusion foundation models.<n>It is designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation.
arXiv Detail & Related papers (2025-05-21T17:59:05Z) - Deep Discrete Encoders: Identifiable Deep Generative Models for Rich Data with Discrete Latent Layers [13.545948734057268]
We propose an interpretable deep generative modeling framework for rich data types with discrete latent layers.<n>We apply DDEs to three diverse real datasets for hierarchical topic modeling, image representation learning, response time modeling in educational testing, and obtain interpretable findings.
arXiv Detail & Related papers (2025-01-02T18:56:23Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding [90.77521413857448]
Deep generative models are anchored in three core capabilities -- generating new instances, reconstructing inputs, and learning compact representations.
We introduce Generalized generative adversarial-Decoding Diffusion Probabilistic Models (EDDPMs)
EDDPMs generalize the Gaussian noising-denoising in standard diffusion by introducing parameterized encoding-decoding.
Experiments on text, proteins, and images demonstrate the flexibility to handle diverse data and tasks.
arXiv Detail & Related papers (2024-02-29T10:08:57Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
We investigate the network traffic data generated from a laser cutting machine deployed in a Trumpf factory in Germany.
We analyze the traffic statistics, capture the dependencies between the internal states of the machine, and model the network traffic as a production state dependent process.
We compare the performance of various generative models including variational autoencoder (VAE), conditional variational autoencoder (CVAE), and generative adversarial network (GAN)
arXiv Detail & Related papers (2022-11-11T09:46:58Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
We develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network.
We propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a downward generative model.
The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.
arXiv Detail & Related papers (2020-06-15T22:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.