A monitoring framework for deployed machine learning models with supply
chain examples
- URL: http://arxiv.org/abs/2211.06239v1
- Date: Fri, 11 Nov 2022 14:31:38 GMT
- Title: A monitoring framework for deployed machine learning models with supply
chain examples
- Authors: Bradley Eck and Duygu Kabakci-Zorlu and Yan Chen and France Savard and
Xiaowei Bao
- Abstract summary: We describe a framework for monitoring machine learning models; and, (2) its implementation for a big data supply chain application.
We use our implementation to study drift in model features, predictions, and performance on three real data sets.
- Score: 2.904613270228912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Actively monitoring machine learning models during production operations
helps ensure prediction quality and detection and remediation of unexpected or
undesired conditions. Monitoring models already deployed in big data
environments brings the additional challenges of adding monitoring in parallel
to the existing modelling workflow and controlling resource requirements. In
this paper, we describe (1) a framework for monitoring machine learning models;
and, (2) its implementation for a big data supply chain application. We use our
implementation to study drift in model features, predictions, and performance
on three real data sets. We compare hypothesis test and information theoretic
approaches to drift detection in features and predictions using the
Kolmogorov-Smirnov distance and Bhattacharyya coefficient. Results showed that
model performance was stable over the evaluation period. Features and
predictions showed statistically significant drifts; however, these drifts were
not linked to changes in model performance during the time of our study.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows [0.0]
This study investigates the efficacy of machine learning models, specifically Random Forest, in anomaly detection systems.
We explore the performance disparity that arises when models are applied to incomplete data typical in real-world, real-time network environments.
arXiv Detail & Related papers (2024-07-03T07:14:25Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
In deep learning applications such as online content recommendation and stock market analysis, models use historical data to make predictions.
We derive robustness certificates for models that use a fixed-size sliding window over the input stream.
Our guarantees hold for the average model performance across the entire stream and are independent of stream size, making them suitable for large data streams.
arXiv Detail & Related papers (2023-03-28T21:02:35Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
We propose a modular machine learning pipeline for ranking predictions on temporal panel datasets.
The modularity of the pipeline allows the use of different models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks.
Online learning techniques, which require no retraining of models, can be used post-prediction to enhance the results.
arXiv Detail & Related papers (2022-12-30T17:19:00Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Monitoring and explainability of models in production [58.720142291102135]
Monitoring deployed models is crucial for continued provision of high quality machine learning enabled services.
We discuss the challenges to successful implementation of solutions in each of these areas with some recent examples of production ready solutions using open source tools.
arXiv Detail & Related papers (2020-07-13T10:37:05Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.