Toward Rapid Bug Resolution for Android Apps
- URL: http://arxiv.org/abs/2312.15318v1
- Date: Sat, 23 Dec 2023 18:29:06 GMT
- Title: Toward Rapid Bug Resolution for Android Apps
- Authors: Junayed Mahmud
- Abstract summary: This paper describes the existing limitations of bug reports and identifies potential strategies for addressing them.
Our vision encompasses a future where the alleviation of these limitations and successful execution of our proposed new research directions can benefit both reporters and developers.
- Score: 0.4759142872591625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bug reports document unexpected behaviors in software, enabling developers to
understand, validate, and fix bugs. Unfortunately, a significant portion of bug
reports is of low quality, which poses challenges for developers in terms of
addressing these issues. Prior research has delved into the information needed
for documenting high-quality bug reports and expediting bug report management.
Furthermore, researchers have explored the challenges associated with bug
report management and proposed various automated techniques. Nevertheless,
these techniques exhibit several limitations, including a lexical gap between
developers and reporters, difficulties in bug reproduction, and identifying bug
locations. Therefore, there is a pressing need for additional efforts to
effectively manage bug reports and enhance the quality of both desktop and
mobile applications. In this paper, we describe the existing limitations of bug
reports and identify potential strategies for addressing them. Our vision
encompasses a future where the alleviation of these limitations and successful
execution of our proposed new research directions can benefit both reporters
and developers, ultimately making the entire software maintenance faster.
Related papers
- Seeker: Enhancing Exception Handling in Code with LLM-based Multi-Agent Approach [54.03528377384397]
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code.
We explore the use of large language models (LLMs) to improve exception handling in code.
We propose Seeker, a multi agent framework inspired by expert developer strategies for exception handling.
arXiv Detail & Related papers (2024-10-09T14:45:45Z) - Developers' Perception: Fixed Bugs Often Overlooked as Quality Contributions [0.0]
Only a third of programmers perceive the quantity of bugs found and rectified in a repository as indicative of higher quality.
This finding substantiates the notion that programmers often misinterpret the significance of testing and bug reporting.
arXiv Detail & Related papers (2024-03-16T04:40:19Z) - MultiDimEr: a multi-dimensional bug analyzEr [5.318531077716712]
We categorize and visualize dimensions of bug reports to identify accruing technical debt.
This evidence can serve practitioners and decision makers not only as an argumentative basis for steering improvement efforts, but also as a starting point for root cause analysis.
arXiv Detail & Related papers (2024-02-16T16:00:42Z) - FacTool: Factuality Detection in Generative AI -- A Tool Augmented
Framework for Multi-Task and Multi-Domain Scenarios [87.12753459582116]
A wider range of tasks now face an increasing risk of containing factual errors when handled by generative models.
We propose FacTool, a task and domain agnostic framework for detecting factual errors of texts generated by large language models.
arXiv Detail & Related papers (2023-07-25T14:20:51Z) - Recommending Bug Assignment Approaches for Individual Bug Reports: An
Empirical Investigation [8.186068333538893]
Multiple approaches have been proposed to automatically recommend potential developers who can address bug reports.
These approaches are typically designed to work for any bug report submitted to any software project.
We conducted an empirical study to validate this conjecture, using three bug assignment approaches applied on 2,249 bug reports from two open source systems.
arXiv Detail & Related papers (2023-05-29T23:02:56Z) - SmartBook: AI-Assisted Situation Report Generation for Intelligence Analysts [55.73424958012229]
This work identifies intelligence analysts' practices and preferences for AI assistance in situation report generation.
We introduce SmartBook, an automated framework designed to generate situation reports from large volumes of news data.
Our comprehensive evaluation of SmartBook, encompassing a user study alongside a content review with an editing study, reveals SmartBook's effectiveness in generating accurate and relevant situation reports.
arXiv Detail & Related papers (2023-03-25T03:03:00Z) - Auto-labelling of Bug Report using Natural Language Processing [0.0]
Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking.
In this paper, we have proposed a solution using a combination of NLP techniques.
It uses a custom data transformer, a deep neural network, and a non-generalizing machine learning method to retrieve existing identical bug reports.
arXiv Detail & Related papers (2022-12-13T02:32:42Z) - Using Developer Discussions to Guide Fixing Bugs in Software [51.00904399653609]
We propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for additional information from developers.
We demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.
arXiv Detail & Related papers (2022-11-11T16:37:33Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation [61.99379022383108]
We propose new deep learning models to solve the bug triage problem.
The models are based on a bidirectional recurrent neural network with attention and on a convolutional neural network.
To improve the quality of ranking, we propose using additional information from version control system annotations.
arXiv Detail & Related papers (2022-01-14T00:16:57Z) - Early Detection of Security-Relevant Bug Reports using Machine Learning:
How Far Are We? [6.438136820117887]
In a typical maintenance scenario, security-relevant bug reports are prioritised by the development team when preparing corrective patches.
Open security-relevant bug reports can become a critical leak of sensitive information that attackers can leverage to perform zero-day attacks.
In recent years, approaches for the detection of security-relevant bug reports based on machine learning have been reported with promising performance.
arXiv Detail & Related papers (2021-12-19T11:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.