AI Ethics in Smart Healthcare
- URL: http://arxiv.org/abs/2211.06346v1
- Date: Wed, 2 Nov 2022 15:30:40 GMT
- Title: AI Ethics in Smart Healthcare
- Authors: Sudeep Pasricha
- Abstract summary: This article reviews the landscape of ethical challenges of integrating artificial intelligence into smart healthcare products.
Ethical challenges relate to transparency, bias, privacy, safety, responsibility, justice, and autonomy.
Open challenges and recommendations are outlined to enable the integration of ethical principles into the design, validation, clinical trials, deployment, monitoring, repair, and retirement of AI-based smart healthcare products.
- Score: 4.226118870861363
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This article reviews the landscape of ethical challenges of integrating
artificial intelligence (AI) into smart healthcare products, including medical
electronic devices. Differences between traditional ethics in the medical
domain and emerging ethical challenges with AI-driven healthcare are presented,
particularly as they relate to transparency, bias, privacy, safety,
responsibility, justice, and autonomy. Open challenges and recommendations are
outlined to enable the integration of ethical principles into the design,
validation, clinical trials, deployment, monitoring, repair, and retirement of
AI-based smart healthcare products.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Implications of Artificial Intelligence on Health Data Privacy and Confidentiality [0.0]
The rapid integration of artificial intelligence in healthcare is revolutionizing medical diagnostics, personalized medicine, and operational efficiency.
However, significant challenges arise concerning patient data privacy, ethical considerations, and regulatory compliance.
This paper examines the dual impact of AI on healthcare, highlighting its transformative potential and the critical need for safeguarding sensitive health information.
arXiv Detail & Related papers (2025-01-03T05:17:23Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice [1.0301404234578682]
We focus on five critical ethical concerns: justice and fairness, transparency, patient consent and confidentiality, accountability, and patient-centered and equitable care.
The paper explores how bias, lack of transparency, and challenges in maintaining patient trust can undermine the effectiveness and fairness of AI applications in healthcare.
arXiv Detail & Related papers (2024-11-18T00:52:22Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial
Intelligence [0.08192907805418582]
This study attempts to identify the major ethical principles influencing the utility performance of AI at different technological levels.
Justice, privacy, bias, lack of regulations, risks, and interpretability are the most important principles to consider for ethical AI.
We propose a new utilitarian ethics-based theoretical framework for designing ethical AI for the healthcare domain.
arXiv Detail & Related papers (2023-09-26T02:10:58Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - From Military to Healthcare: Adopting and Expanding Ethical Principles
for Generative Artificial Intelligence [10.577932700903112]
Generative AI, an emerging technology designed to efficiently generate valuable information, holds great promise.
We propose GREAT PLEA ethical principles, encompassing governance, reliability, equity, accountability, traceability, privacy, lawfulness, empathy, and autonomy, for generative AI in healthcare.
arXiv Detail & Related papers (2023-08-04T16:22:06Z) - Ethics in conversation: Building an ethics assurance case for autonomous
AI-enabled voice agents in healthcare [1.8964739087256175]
The principles-based ethics assurance argument pattern is one proposal in the AI ethics landscape.
This paper presents the interim findings of a case study applying this ethics assurance framework to the use of Dora, an AI-based telemedicine system.
arXiv Detail & Related papers (2023-05-23T16:04:59Z) - Organizational Governance of Emerging Technologies: AI Adoption in
Healthcare [43.02293389682218]
The Health AI Partnership aims to better define the requirements for adequate organizational governance of AI systems in healthcare settings.
This is one of the most detailed qualitative analyses to date of the current governance structures and processes involved in AI adoption by health systems in the United States.
We hope these findings can inform future efforts to build capabilities to promote the safe, effective, and responsible adoption of emerging technologies in healthcare.
arXiv Detail & Related papers (2023-04-25T18:30:47Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.