Integrating machine learning concepts into undergraduate classes
- URL: http://arxiv.org/abs/2211.06491v1
- Date: Wed, 9 Nov 2022 23:28:45 GMT
- Title: Integrating machine learning concepts into undergraduate classes
- Authors: Chinmay Sahu, Blaine Ayotte, Mahesh K. Banavar
- Abstract summary: Machine learning is now being offered as a senior-level elective in several curricula.
Exposure to the concepts and practical applications of machine learning will assist in the creation of a workforce ready to tackle problems related to machine learning.
While students prefer the proposed side-by-side teaching approach, numerical comparisons show that the workshop approach may be more effective for student learning.
- Score: 4.917075909999549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this innovative practice work-in-progress paper, we compare two different
methods to teach machine learning concepts to undergraduate students in
Electrical Engineering. While machine learning is now being offered as a
senior-level elective in several curricula, this does not mean all students are
exposed to it. Exposure to the concepts and practical applications of machine
learning will assist in the creation of a workforce ready to tackle problems
related to machine learning, currently a hot topic in industry. Preliminary
assessments indicate that this approach promotes student learning. While
students prefer the proposed side-by-side teaching approach, numerical
comparisons show that the workshop approach may be more effective for student
learning, indicating that further work in this area is required.
Related papers
- Real-time classification of EEG signals using Machine Learning deployment [0.0]
This study proposes a machine learning-based approach for predicting the level of students' comprehension with regard to a certain topic.
A browser interface was introduced that accesses the values of the system's parameters to determine a student's level of concentration on a chosen topic.
arXiv Detail & Related papers (2024-12-27T08:14:28Z) - Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
GRADE is a new controlled experimental setting to study pedagogy and representational alignment.
We find that improved representational alignment with a student improves student learning outcomes.
However, this effect is moderated by the size and representational diversity of the class being taught.
arXiv Detail & Related papers (2024-06-06T17:48:24Z) - Application-Driven Innovation in Machine Learning [56.85396167616353]
We describe the paradigm of application-driven research in machine learning.
We show how this approach can productively synergize with methods-driven work.
Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation.
arXiv Detail & Related papers (2024-03-26T04:59:27Z) - Explainability in Machine Learning: a Pedagogical Perspective [9.393988089692947]
We provide a pedagogical perspective on how to structure the learning process to better impart knowledge to students and researchers in machine learning.
We discuss the advantages and disadvantages of various opaque and transparent machine learning models.
We will also discuss ways to structure potential assignments to best help students learn to use explainability as a tool alongside any given machine learning application.
arXiv Detail & Related papers (2022-02-21T16:15:57Z) - Iterative Teacher-Aware Learning [136.05341445369265]
In human pedagogy, teachers and students can interact adaptively to maximize communication efficiency.
We propose a gradient optimization based teacher-aware learner who can incorporate teacher's cooperative intention into the likelihood function.
arXiv Detail & Related papers (2021-10-01T00:27:47Z) - Distribution Matching for Machine Teaching [64.39292542263286]
Machine teaching is an inverse problem of machine learning that aims at steering the student learner towards its target hypothesis.
Previous studies on machine teaching focused on balancing the teaching risk and cost to find those best teaching examples.
This paper presents a distribution matching-based machine teaching strategy.
arXiv Detail & Related papers (2021-05-06T09:32:57Z) - SELM: Software Engineering of Machine Learning Models [0.19116784879310023]
In this article, we present a SELM framework for Software Engineering of machine Learning Models.
Using the SELM framework, we can improve a machine learning process efficiency and provide more accuracy in learning.
This issue highlights the importance of an interdisciplinary approach to machine learning.
arXiv Detail & Related papers (2021-03-20T21:43:24Z) - Learning Student-Friendly Teacher Networks for Knowledge Distillation [50.11640959363315]
We propose a novel knowledge distillation approach to facilitate the transfer of dark knowledge from a teacher to a student.
Contrary to most of the existing methods that rely on effective training of student models given pretrained teachers, we aim to learn the teacher models that are friendly to students.
arXiv Detail & Related papers (2021-02-12T07:00:17Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.