Real-time classification of EEG signals using Machine Learning deployment
- URL: http://arxiv.org/abs/2412.19515v1
- Date: Fri, 27 Dec 2024 08:14:28 GMT
- Title: Real-time classification of EEG signals using Machine Learning deployment
- Authors: Swati Chowdhuri, Satadip Saha, Samadrita Karmakar, Ankur Chanda,
- Abstract summary: This study proposes a machine learning-based approach for predicting the level of students' comprehension with regard to a certain topic.
A browser interface was introduced that accesses the values of the system's parameters to determine a student's level of concentration on a chosen topic.
- Score: 0.0
- License:
- Abstract: The prevailing educational methods predominantly rely on traditional classroom instruction or online delivery, often limiting the teachers' ability to engage effectively with all the students simultaneously. A more intrinsic method of evaluating student attentiveness during lectures can enable the educators to tailor the course materials and their teaching styles in order to better meet the students' needs. The aim of this paper is to enhance teaching quality in real time, thereby fostering a higher student engagement in the classroom activities. By monitoring the students' electroencephalography (EEG) signals and employing machine learning algorithms, this study proposes a comprehensive solution for addressing this challenge. Machine learning has emerged as a powerful tool for simplifying the analysis of complex variables, enabling the effective assessment of the students' concentration levels based on specific parameters. However, the real-time impact of machine learning models necessitates a careful consideration as their deployment is concerned. This study proposes a machine learning-based approach for predicting the level of students' comprehension with regard to a certain topic. A browser interface was introduced that accesses the values of the system's parameters to determine a student's level of concentration on a chosen topic. The deployment of the proposed system made it necessary to address the real-time challenges faced by the students, consider the system's cost, and establish trust in its efficacy. This paper presents the efforts made for approaching this pertinent issue through the implementation of innovative technologies and provides a framework for addressing key considerations for future research directions.
Related papers
- Machine Learning-Driven Student Performance Prediction for Enhancing Tiered Instruction [11.564820268803619]
Student performance prediction is one of the most important subjects in educational data mining.
Despite extensive prediction experiments, machine learning methods have not been effectively integrated into practical teaching strategies.
This study integrates the results of machine learning-based student performance prediction with tiered instruction, aiming to enhance student outcomes in target course.
arXiv Detail & Related papers (2025-02-05T13:13:25Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Integrating machine learning concepts into undergraduate classes [4.917075909999549]
Machine learning is now being offered as a senior-level elective in several curricula.
Exposure to the concepts and practical applications of machine learning will assist in the creation of a workforce ready to tackle problems related to machine learning.
While students prefer the proposed side-by-side teaching approach, numerical comparisons show that the workshop approach may be more effective for student learning.
arXiv Detail & Related papers (2022-11-09T23:28:45Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
We propose a data driven approach that makes use of Machine Learning techniques to generate a classifier called credit score.
The proposal to use credit score as progress indicator is well suited to be used in a Learning Management System.
arXiv Detail & Related papers (2022-11-02T08:24:08Z) - Real-time Attention Span Tracking in Online Education [0.0]
This paper intends to provide a mechanism that uses the camera feed and microphone input to monitor the real-time attention level of students during online classes.
We propose a system that uses five distinct non-verbal features to calculate the attention score of the student during computer based tasks and generate real-time feedback for both students and the organization.
arXiv Detail & Related papers (2021-11-29T17:05:59Z) - The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks [0.30458514384586394]
The Wits Intelligent Teaching System (WITS) aims to assist lecturers with real-time feedback regarding student affect.
A CNN based on AlexNet is successfully trained and which significantly outperforms a Support Vector Machine approach.
arXiv Detail & Related papers (2021-05-28T12:59:37Z) - Distribution Matching for Machine Teaching [64.39292542263286]
Machine teaching is an inverse problem of machine learning that aims at steering the student learner towards its target hypothesis.
Previous studies on machine teaching focused on balancing the teaching risk and cost to find those best teaching examples.
This paper presents a distribution matching-based machine teaching strategy.
arXiv Detail & Related papers (2021-05-06T09:32:57Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
We propose Point Adversarial Self Mining (PASM) to improve the recognition accuracy in facial expression recognition.
PASM uses a point adversarial attack method and a trained teacher network to locate the most informative position related to the target task.
The adaptive learning materials generation and teacher/student update can be conducted more than one time, improving the network capability iteratively.
arXiv Detail & Related papers (2020-08-26T06:39:24Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.