論文の概要: Some aspects of noise in binary classification with quantum circuits
- arxiv url: http://arxiv.org/abs/2211.06492v2
- Date: Mon, 8 May 2023 17:54:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 00:07:11.557751
- Title: Some aspects of noise in binary classification with quantum circuits
- Title(参考訳): 量子回路を用いた二元分類における雑音の諸相
- Authors: Yonghoon Lee and Doga Murat Kurkcuoglu and Gabriel Nathan Perdue
- Abstract要約: 本研究では,量子回路を用いた二値分類の性能に及ぼす実量子ハードウェアの影響について検討した。
データ中のノイズが正規化器として機能することを示し、機械学習問題のある場合のノイズによる潜在的な利点を示唆する。
- 参考スコア(独自算出の注目度): 2.2311710049695446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formally study the effects of a restricted single-qubit noise model
inspired by real quantum hardware, and corruption in quantum training data, on
the performance of binary classification using quantum circuits. We find that,
under the assumptions made in our noise model, that the measurement of a qubit
is affected only by the noises on that qubit even in the presence of
entanglement. Furthermore, when fitting a binary classifier using a quantum
dataset for training, we show that noise in the data can work as a regularizer,
implying potential benefits from the noise in certain cases for machine
learning problems.
- Abstract(参考訳): 量子回路を用いた二項分類の性能に及ぼす実量子ハードウェアにインスパイアされた制約単一量子ビット雑音モデルと量子トレーニングデータの破損の影響を正式に研究する。
ノイズモデルによる仮定では、量子ビットの測定は、絡み合いが存在する場合でも、その量子ビット上のノイズによってのみ影響を受けることが分かっています。
さらに、トレーニング用量子データセットを用いてバイナリ分類器を適合させると、データ内のノイズが正規化器として機能し、機械学習問題のある場合のノイズによる潜在的なメリットを示唆することを示す。
関連論文リスト
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - Quantum State Reconstruction in a Noisy Environment via Deep Learning [0.9012198585960443]
未知のノイズチャネルによって崩壊した量子状態の再構成と分類のタスクについて検討する。
このような手法が,99%以上の忠実度で回復できることを示す。
また、異なる量子ノイズチャネルを区別するタスクも検討し、ニューラルネットワークベースの分類器が、そのような分類問題を正確な精度で解決できることを示す。
論文 参考訳(メタデータ) (2023-09-21T10:03:30Z) - Taking advantage of noise in quantum reservoir computing [0.0]
量子雑音は量子貯水池計算の性能向上に有効であることを示す。
我々の結果は量子デバイスの基礎となる物理的なメカニズムに新たな光を当てた。
論文 参考訳(メタデータ) (2023-01-17T11:22:02Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
量子ランダムな回転雑音を加えることで、敵攻撃に対する量子分類器のロバスト性を向上できることを示す。
我々は、量子分類器が敵の例に対して防御できるように、証明された堅牢性を導出する。
論文 参考訳(メタデータ) (2022-11-02T05:17:04Z) - Evaluating the Resilience of Variational Quantum Algorithms to Leakage
Noise [6.467585493563487]
漏れノイズは、エラー訂正アプローチでは処理できないエラーの損傷源である。
このノイズが変分量子アルゴリズム(VQA)の性能に与える影響はまだ分かっていない。
論文 参考訳(メタデータ) (2022-08-10T14:50:14Z) - Noise effects on purity and quantum entanglement in terms of physical
implementability [27.426057220671336]
量子デバイスの不完全操作による量子デコヒーレンスは、ノイズの多い中間スケール量子(NISQ)時代の重要な問題である。
量子情報および量子計算における標準解析は、量子ノイズチャネルをパラメータ化するためにエラーレートを使用する。
本稿では,その逆の物理的実装性により,ノイズチャネルのデコヒーレンス効果を特徴付けることを提案する。
論文 参考訳(メタデータ) (2022-07-04T13:35:17Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Impact of quantum noise on the training of quantum Generative
Adversarial Networks [0.0]
我々は、異なる種類の量子ノイズが存在する場合の量子生成逆数ネットワーク(qGAN)の性能について、最初の研究を行う。
特に,qGAN学習過程におけるリードアウトと2ビットゲート誤差の影響について検討する。
論文 参考訳(メタデータ) (2022-03-02T10:35:34Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
絡み合った量子系のノイズは、複数の自由度を含む多体効果のために特徴付けるのが困難である。
2キュービットゲートで発生する雑音を特徴付けるマルチキュービットダイナミックデカップリングシーケンスを開発し,適用する。
論文 参考訳(メタデータ) (2022-01-26T20:22:38Z) - A deep learning model for noise prediction on near-term quantum devices [137.6408511310322]
我々は、量子デバイスからの実験データに基づいて畳み込みニューラルネットワークをトレーニングし、ハードウェア固有のノイズモデルを学ぶ。
コンパイラはトレーニングされたネットワークをノイズ予測器として使用し、期待されるノイズを最小限に抑えるために回路にゲートのシーケンスを挿入する。
論文 参考訳(メタデータ) (2020-05-21T17:47:29Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。