Integrating Transformer and Autoencoder Techniques with Spectral Graph
Algorithms for the Prediction of Scarcely Labeled Molecular Data
- URL: http://arxiv.org/abs/2211.06759v1
- Date: Sat, 12 Nov 2022 22:45:32 GMT
- Title: Integrating Transformer and Autoencoder Techniques with Spectral Graph
Algorithms for the Prediction of Scarcely Labeled Molecular Data
- Authors: Nicole Hayes, Ekaterina Merkurjev, Guo-Wei Wei
- Abstract summary: This work introduces three graph-based models incorporating Merriman-Bence-Osher (MBO) techniques to tackle this challenge.
Specifically, graph-based modifications of the MBO scheme is integrated with state-of-the-art techniques, including a home-made transformer and an autoencoder.
The proposed models are validated using five benchmark data sets.
- Score: 2.8360662552057323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In molecular and biological sciences, experiments are expensive,
time-consuming, and often subject to ethical constraints. Consequently, one
often faces the challenging task of predicting desirable properties from small
data sets or scarcely-labeled data sets. Although transfer learning can be
advantageous, it requires the existence of a related large data set. This work
introduces three graph-based models incorporating Merriman-Bence-Osher (MBO)
techniques to tackle this challenge. Specifically, graph-based modifications of
the MBO scheme is integrated with state-of-the-art techniques, including a
home-made transformer and an autoencoder, in order to deal with
scarcely-labeled data sets. In addition, a consensus technique is detailed. The
proposed models are validated using five benchmark data sets. We also provide a
thorough comparison to other competing methods, such as support vector
machines, random forests, and gradient boosted decision trees, which are known
for their good performance on small data sets. The performances of various
methods are analyzed using residue-similarity (R-S) scores and R-S indices.
Extensive computational experiments and theoretical analysis show that the new
models perform very well even when as little as 1% of the data set is used as
labeled data.
Related papers
- Approaching Metaheuristic Deep Learning Combos for Automated Data Mining [0.5419570023862531]
This work proposes a means of combining meta-heuristic methods with conventional classifiers and neural networks in order to perform automated data mining.
Experiments on the MNIST dataset for handwritten digit recognition were performed.
It was empirically observed that using a ground truth labeled dataset's validation accuracy is inadequate for correcting labels of other previously unseen data instances.
arXiv Detail & Related papers (2024-10-16T10:28:22Z) - MDM: Advancing Multi-Domain Distribution Matching for Automatic Modulation Recognition Dataset Synthesis [35.07663680944459]
Deep learning technology has been successfully introduced into Automatic Modulation Recognition (AMR) tasks.
The success of deep learning is all attributed to the training on large-scale datasets.
In order to solve the problem of large amount of data, some researchers put forward the method of data distillation.
arXiv Detail & Related papers (2024-08-05T14:16:54Z) - Transfer Learning for Molecular Property Predictions from Small Data Sets [0.0]
We benchmark common machine learning models for the prediction of molecular properties on two small data sets.
We present a transfer learning strategy that uses large data sets to pre-train the respective models and allows to obtain more accurate models after fine-tuning on the original data sets.
arXiv Detail & Related papers (2024-04-20T14:25:34Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - EGG-GAE: scalable graph neural networks for tabular data imputation [8.775728170359024]
We propose a novel EdGe Generation Graph AutoEncoder (EGG-GAE) for missing data imputation.
EGG-GAE works on randomly sampled mini-batches of the input data, and it automatically infers the best connectivity across the mini-batch for each architecture layer.
arXiv Detail & Related papers (2022-10-19T10:26:17Z) - Too Fine or Too Coarse? The Goldilocks Composition of Data Complexity
for Robust Left-Right Eye-Tracking Classifiers [0.0]
We train machine learning models utilizing a mixed dataset composed of both fine- and coarse-grain data.
For our purposes, finer-grain data refers to data collected using more complex methods whereas coarser-grain data refers to data collected using more simple methods.
arXiv Detail & Related papers (2022-08-24T23:18:08Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
We propose Non-Parametric learning by Compression with Latent Variables (NPC-LV)
NPC-LV is a learning framework for any dataset with abundant unlabeled data but very few labeled ones.
We show that NPC-LV outperforms supervised methods on all three datasets on image classification in low data regime.
arXiv Detail & Related papers (2022-06-23T09:35:03Z) - Condensing Graphs via One-Step Gradient Matching [50.07587238142548]
We propose a one-step gradient matching scheme, which performs gradient matching for only one single step without training the network weights.
Our theoretical analysis shows this strategy can generate synthetic graphs that lead to lower classification loss on real graphs.
In particular, we are able to reduce the dataset size by 90% while approximating up to 98% of the original performance.
arXiv Detail & Related papers (2022-06-15T18:20:01Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.