Treatment-RSPN: Recurrent Sum-Product Networks for Sequential Treatment
Regimes
- URL: http://arxiv.org/abs/2211.07052v1
- Date: Mon, 14 Nov 2022 00:18:44 GMT
- Title: Treatment-RSPN: Recurrent Sum-Product Networks for Sequential Treatment
Regimes
- Authors: Adam Dejl, Harsh Deep, Jonathan Fei, Ardavan Saeedi and Li-wei H.
Lehman
- Abstract summary: Sum-product networks (SPNs) have emerged as a novel deep learning architecture enabling highly efficient probabilistic inference.
We propose a general framework for modelling sequential treatment decision-making behaviour and treatment response using RSPNs.
We evaluate our approach on a synthetic dataset as well as real-world data from the MIMIC-IV intensive care unit medical database.
- Score: 3.7004311481324677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sum-product networks (SPNs) have recently emerged as a novel deep learning
architecture enabling highly efficient probabilistic inference. Since their
introduction, SPNs have been applied to a wide range of data modalities and
extended to time-sequence data. In this paper, we propose a general framework
for modelling sequential treatment decision-making behaviour and treatment
response using recurrent sum-product networks (RSPNs). Models developed using
our framework benefit from the full range of RSPN capabilities, including the
abilities to model the full distribution of the data, to seamlessly handle
latent variables, missing values and categorical data, and to efficiently
perform marginal and conditional inference. Our methodology is complemented by
a novel variant of the expectation-maximization algorithm for RSPNs, enabling
efficient training of our models. We evaluate our approach on a synthetic
dataset as well as real-world data from the MIMIC-IV intensive care unit
medical database. Our evaluation demonstrates that our approach can closely
match the ground-truth data generation process on synthetic data and achieve
results close to neural and probabilistic baselines while using a tractable and
interpretable model.
Related papers
- Amortized Probabilistic Conditioning for Optimization, Simulation and Inference [20.314865219675056]
Amortized Conditioning Engine (ACE)
A new transformer-based meta-learning model that explicitly represents latent variables of interest.
ACE affords conditioning on both observed data and interpretable latent variables, the inclusion of priors at runtime, and outputs predictive distributions for discrete and continuous data and latents.
arXiv Detail & Related papers (2024-10-20T07:22:54Z) - When to Trust Your Data: Enhancing Dyna-Style Model-Based Reinforcement Learning With Data Filter [7.886307329450978]
Dyna-style algorithms combine two approaches by using simulated data from an estimated environmental model to accelerate model-free training.
Previous works address this issue by using model ensembles or pretraining the estimated model with data collected from the real environment.
We introduce an out-of-distribution data filter that removes simulated data from the estimated model that significantly diverges from data collected in the real environment.
arXiv Detail & Related papers (2024-10-16T01:49:03Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
We propose MADS, a novel auto-decoding framework for time series imputation, built upon implicit neural representations.
We evaluate our model on two real-world datasets, and show that it outperforms state-of-the-art methods for time series imputation.
arXiv Detail & Related papers (2023-07-03T09:08:47Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - A Hybrid Framework for Sequential Data Prediction with End-to-End
Optimization [0.0]
We investigate nonlinear prediction in an online setting and introduce a hybrid model that effectively mitigates hand-designed features and manual model selection issues.
We employ a recurrent neural network (LSTM) for adaptive feature extraction from sequential data and a gradient boosting machinery (soft GBDT) for effective supervised regression.
We demonstrate the learning behavior of our algorithm on synthetic data and the significant performance improvements over the conventional methods over various real life datasets.
arXiv Detail & Related papers (2022-03-25T17:13:08Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.