論文の概要: Grafting Pre-trained Models for Multimodal Headline Generation
- arxiv url: http://arxiv.org/abs/2211.07210v1
- Date: Mon, 14 Nov 2022 08:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 16:09:06.923154
- Title: Grafting Pre-trained Models for Multimodal Headline Generation
- Title(参考訳): マルチモーダルヘッドライン生成のための事前学習モデル
- Authors: Lingfeng Qiao, Chen Wu, Ye Liu, Haoyuan Peng, Di Yin, Bo Ren
- Abstract要約: マルチモーダルヘッドラインはビデオフレームと書き起こしの両方を利用して、ビデオの自然言語タイトルを生成する。
事前学習された言語モデルとビデオ言語モデルに関するこれまでの研究は、下流タスクにおいて大きな進歩を遂げた。
本稿では,ビデオエンコーダを生成前学習言語モデル上に事前学習したビデオ言語モデルから移植する手法を提案する。
- 参考スコア(独自算出の注目度): 12.063053852096514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal headline utilizes both video frames and transcripts to generate
the natural language title of the videos. Due to a lack of large-scale,
manually annotated data, the task of annotating grounded headlines for video is
labor intensive and impractical. Previous researches on pre-trained language
models and video-language models have achieved significant progress in related
downstream tasks. However, none of them can be directly applied to multimodal
headline architecture where we need both multimodal encoder and sentence
decoder. A major challenge in simply gluing language model and video-language
model is the modality balance, which is aimed at combining visual-language
complementary abilities. In this paper, we propose a novel approach to graft
the video encoder from the pre-trained video-language model on the generative
pre-trained language model. We also present a consensus fusion mechanism for
the integration of different components, via inter/intra modality relation.
Empirically, experiments show that the grafted model achieves strong results on
a brand-new dataset collected from real-world applications.
- Abstract(参考訳): マルチモーダルヘッドラインはビデオフレームと書き起こしの両方を利用して、ビデオの自然言語タイトルを生成する。
大規模で手動で注釈付けされたデータがないため、動画の見出しに注釈をつけるタスクは労働集約的で実用的ではない。
事前学習された言語モデルとビデオ言語モデルに関するこれまでの研究は、下流タスクにおいて大きな進歩を遂げた。
しかし、これらはマルチモーダルエンコーダと文デコーダの両方を必要とするマルチモーダルヘッドラインアーキテクチャに直接適用することはできない。
言語モデルとビデオ言語モデルを簡単に結合する上での大きな課題は、視覚言語補完能力の組み合わせを目的としたモダリティバランスである。
本稿では,ビデオエンコーダを前訓練型ビデオ言語モデルから生成型前訓練型言語モデルに移植する新しい手法を提案する。
また,相互/イントラモダリティ関係を介して,異なる成分の統合のためのコンセンサス融合機構を提案する。
実験により, 実世界のアプリケーションから収集した新たなデータセットに対して, グラフトモデルにより強い結果が得られた。
関連論文リスト
- VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
既存のテキスト間拡散モデルは、事前訓練のためにテキストのみのエンコーダにのみ依存する。
検索手法を用いて大規模マルチモーダル・プロンプト・データセットを構築し,テキスト・プロンプトとテキスト・プロンプトのペア化を行う。
マルチモーダル命令を組み込んだ3つのビデオ生成タスクにおいて,第1ステージからモデルを微調整する。
論文 参考訳(メタデータ) (2024-07-08T18:12:49Z) - Towards Multi-Task Multi-Modal Models: A Video Generative Perspective [5.495245220300184]
この論文は、さまざまな条件下でビデオやその他のモダリティを生成するマルチタスクモデルを構築するために、我々の努力を年代記している。
我々は、視覚的観察と解釈可能な語彙の双方向マッピングのための新しいアプローチを公表する。
私たちのスケーラブルなビジュアルトークン表現は、生成、圧縮、理解タスクで有益であることが証明されます。
論文 参考訳(メタデータ) (2024-05-26T23:56:45Z) - Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision,
Language, Audio, and Action [46.76487873983082]
Unified-IO 2は、画像、テキスト、オーディオ、アクションの理解と生成が可能な最初の自己回帰型マルチモーダルモデルである。
我々は、多様な情報源から、大規模なマルチモーダル事前学習コーパスをスクラッチからトレーニングする。
単一の統一モデルにより、Unified-IO 2はGRITベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-28T17:57:06Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
マルチターンインターリーブ型インストラクションフォロー機能を備えた,より大規模な言語モデルを実現するための,ほとんどアノテーションのないフレームワークであるTextBindを紹介する。
提案手法では,画像キャプチャペアのみが必要であり,言語モデルからマルチターンマルチモーダル・インストラクション・レスポンス・会話を生成する。
そこで我々は,画像エンコーダとデコーダモデルをシームレスに統合する言語モデル中心アーキテクチャであるMIMを考案した。
論文 参考訳(メタデータ) (2023-09-14T15:34:01Z) - TextMI: Textualize Multimodal Information for Integrating Non-verbal
Cues in Pre-trained Language Models [5.668457303716451]
マルチモーダルな行動分析タスクのための汎用的,競争的なベースラインとして,TextMIを提案する。
我々のアプローチは、モデルの複雑さを著しく減らし、モデルの判断に解釈可能性を追加し、様々なタスクに適用できます。
論文 参考訳(メタデータ) (2023-03-27T17:54:32Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
本稿では,様々な基礎モデルに対する汎用インタフェースとして言語モデルを提案する。
事前訓練されたエンコーダのコレクションは、様々なモダリティ(ビジョンや言語など)を知覚する
インタフェースとモジュールエンコーダを協調的に事前学習するための半因果言語モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:34:22Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
マルチチャンネルビデオ言語検索は、異なるチャンネルからの情報を理解するためにモデルを必要とする。
対照的なマルチモーダルモデルは、画像やビデオやテキストのエンティティの整合に非常に効果的であることが示されている。
これら2つの行を、限られたデータとリソースを持つマルチチャンネルビデオ言語検索に迅速に適応する方法は、明らかではない。
論文 参考訳(メタデータ) (2022-06-05T01:43:52Z) - Align and Prompt: Video-and-Language Pre-training with Entity Prompts [111.23364631136339]
ビデオと言語による事前トレーニングは、様々なダウンストリームタスクに有望な改善を示している。
Align and Prompt: クロスモーダルアライメントを改良した,効率的かつ効果的なビデオ・言語事前学習フレームワークを提案する。
私たちのコードと事前訓練されたモデルはリリースされます。
論文 参考訳(メタデータ) (2021-12-17T15:55:53Z) - Understanding Chinese Video and Language via Contrastive Multimodal
Pre-Training [79.88705563918413]
VICTORという新しいビデオ言語理解フレームワークを提案します。VICTORは対比mulTimOdal pRe-trainingによる視覚言語理解の略です。
VICTORは、対応する高品質のテキスト記述を備えた1000万以上の完全なビデオを含む大規模な中国のビデオ言語データセットで訓練されています。
論文 参考訳(メタデータ) (2021-04-19T15:58:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。