論文の概要: Partial counterfactual identification and uplift modeling: theoretical
results and real-world assessment
- arxiv url: http://arxiv.org/abs/2211.07264v1
- Date: Mon, 14 Nov 2022 10:45:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 19:07:36.541594
- Title: Partial counterfactual identification and uplift modeling: theoretical
results and real-world assessment
- Title(参考訳): 部分的対物識別と昇降モデリング--理論的結果と実世界評価
- Authors: Th\'eo Verhelst, Denis Mercier, Jeevan Shrestha, Gianluca Bontempi
- Abstract要約: 本稿では,アップリフト項に基づく反実的文の確率の有界性について論じる。
このような境界の厳密性は、昇降項に設定された特徴の情報に依存することを示す。
実測結果間の条件付き独立性を仮定した点推定器を提案する。
- 参考スコア(独自算出の注目度): 0.4129225533930965
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Counterfactuals are central in causal human reasoning and the scientific
discovery process. The uplift, also called conditional average treatment
effect, measures the causal effect of some action, or treatment, on the outcome
of an individual. This paper discusses how it is possible to derive bounds on
the probability of counterfactual statements based on uplift terms. First, we
derive some original bounds on the probability of counterfactuals and we show
that tightness of such bounds depends on the information of the feature set on
the uplift term. Then, we propose a point estimator based on the assumption of
conditional independence between the counterfactual outcomes. The quality of
the bounds and the point estimators are assessed on synthetic data and a large
real-world customer data set provided by a telecom company, showing significant
improvement over the state of the art.
- Abstract(参考訳): 反事実は因果的推論と科学的発見プロセスの中心である。
アップリフト(英: Uplift、条件平均治療効果とも呼ばれる)は、ある行動や治療が個人の結果に与える影響を測定する。
本稿では,隆起項に基づく反事実文の確率の境界を導出する方法について述べる。
まず, 反事実の確率に関する元の境界を導出し, このような境界の厳密性は隆起項に設定された特徴の情報に依存することを示した。
次に,反実結果間の条件付き独立性を仮定した点推定器を提案する。
通信会社が提供する合成データと大規模な実世界の顧客データに基づいて、境界値と点推定器の品質を評価し、技術の現状を大きく改善したことを示す。
関連論文リスト
- Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Data Association Aware POMDP Planning with Hypothesis Pruning
Performance Guarantees [7.928094304325113]
あいまいなデータアソシエーションによるプランニングのためのプルーニングに基づくアプローチを導入する。
我々の重要な貢献は、仮説の完全な集合に基づく値関数と仮説のプルーンド・サブセットに基づく値関数とのバウンダリを導出することである。
我々は,これらの境界が,ふりかえりにおけるプルーニングの証明にどのように使用できるかを実証し,その損失に対する事前定義された限界を確保するために,どの仮説がプルーンであるかを決定する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-03T18:35:01Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation [10.75801980090826]
最終治療効果の期待を推定するための3つの新しいベイズ的手法を提案する。
これらの手法は、考慮された不確実性の原因が異なるため、2つのデータソースを組み合わせることが可能である。
我々はこれらの考え方を非政治評価フレームワークに一般化する。
論文 参考訳(メタデータ) (2022-11-02T23:39:36Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Federated Estimation of Causal Effects from Observational Data [19.657789891394504]
フェデレートされたデータソースを用いた因果推論のための新しいフレームワークを提案する。
我々は、異なるプライベートデータソースからの局所因果効果を中央集権化せずに評価し、統合する。
論文 参考訳(メタデータ) (2021-05-31T08:06:00Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Causal Estimation with Functional Confounders [24.54466899641308]
因果推論は、無知と肯定性の2つの基本的な仮定に依存します。
真共起値が観測データの関数として表現できる場合の因果推論について検討する。
この設定では、不可知性は満たされるが、肯定性は侵害され、因果推論は一般に不可能である。
論文 参考訳(メタデータ) (2021-02-17T02:16:21Z) - A Class of Algorithms for General Instrumental Variable Models [29.558215059892206]
因果治療効果の推定は、様々な現実世界で発生する重要な問題である。
連続分布における因果効果のバウンディング法を提案する。
論文 参考訳(メタデータ) (2020-06-11T12:32:24Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。