論文の概要: Contrastive Learning for Climate Model Bias Correction and
Super-Resolution
- arxiv url: http://arxiv.org/abs/2211.07555v1
- Date: Thu, 10 Nov 2022 19:45:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 17:22:23.866077
- Title: Contrastive Learning for Climate Model Bias Correction and
Super-Resolution
- Title(参考訳): 気候モデルバイアス補正と超解法の対比学習
- Authors: Tristan Ballard, Gopal Erinjippurath
- Abstract要約: 局地的な気候リスクを正確に見積もるために、後処理が必要である。
本稿では,画像スーパーレゾリューション(SR)とコントラスト学習生成対向ネットワーク(GAN)の組み合わせに基づく,この課題に対する代替手法を提案する。
われわれのモデルでは、NASAの2倍の空間分解能に到達し、日中の降水量と温度の両方において、同等または改善された偏差補正を達成できた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Climate models often require post-processing in order to make accurate
estimates of local climate risk. The most common post-processing applied is
bias-correction and spatial resolution enhancement. However, the statistical
methods typically used for this not only are incapable of capturing
multivariate spatial correlation information but are also reliant on rich
observational data often not available outside of developed countries, limiting
their potential. Here we propose an alternative approach to this challenge
based on a combination of image super resolution (SR) and contrastive learning
generative adversarial networks (GANs). We benchmark performance against NASA's
flagship post-processed CMIP6 climate model product, NEX-GDDP. We find that our
model successfully reaches a spatial resolution double that of NASA's product
while also achieving comparable or improved levels of bias correction in both
daily precipitation and temperature. The resulting higher fidelity simulations
of present and forward-looking climate can enable more local, accurate models
of hazards like flooding, drought, and heatwaves.
- Abstract(参考訳): 気候モデルは、しばしば局所的な気候リスクを正確に見積もるために、後処理を必要とする。
最も一般的な処理はバイアス補正と空間分解能向上である。
しかし、このために一般的に用いられる統計手法は、多変量空間相関情報を取得できないだけでなく、先進国以外では利用できない豊富な観測データにも依存しており、その可能性を制限することができる。
本稿では,画像スーパーレゾリューション (sr) とコントラスト学習生成型広告ネットワーク (gans) を組み合わせたアプローチを提案する。
我々はNASAの旗艦CMIP6気候モデル製品であるNEX-GDDPに対して性能をベンチマークした。
われわれのモデルでは、NASAの2倍の空間分解能に到達し、日中の降水量と温度の両方において、同等または改善された偏差補正を達成できた。
その結果、現在の気候と前方の気候の忠実度をシミュレーションすることで、洪水、干ばつ、熱波といったより局所的で正確なハザードモデルが可能になる。
関連論文リスト
- Generative Adversarial Models for Extreme Downscaling of Climate
Datasets [0.0]
気候データセットを極端に下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方へ下方
この手法は、既存の手法では無視されがちなダウンスケーリングプロセスに固有の不確実性を明確に考慮する。
非常に高いスケーリング要素を持つタスクのスケールダウンにおけるフレームワークのパフォーマンスを実演する。
論文 参考訳(メタデータ) (2024-02-21T18:25:04Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
本稿では,気候データ,特に地域規模での降水量について,より詳細な生成モデルを提案する。
複数のLR気候変数に条件付き拡散確率モデルを用いる。
以上の結果から,下降気候データにおける条件拡散モデルの有効性が示唆された。
論文 参考訳(メタデータ) (2023-12-12T09:39:52Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
この研究は、最近のビデオ拡散モデルを拡張して、超解像を降水させる。
決定論的ダウンスケーラと時間条件付き拡散モデルを用いて雑音特性と高周波パターンを抽出する。
カリフォルニアとヒマラヤを用いたCRPS, MSE, 降水分布の把握, および定性的側面の解析により, データ駆動型降水ダウンスケーリングの新しい標準として本手法を確立した。
論文 参考訳(メタデータ) (2023-12-11T02:38:07Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
GAN(Generative Adversarial Network)は、コンピュータビジョンコミュニティによって超高解像度問題で成功することが実証されている。
GANとVAE-GANは、高分解能で空間的に整合した降水マップを作成しながら、最先端のポイントワイズポストプロセッシング手法の統計的特性と一致することを示す。
論文 参考訳(メタデータ) (2022-04-05T07:19:42Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
我々は、高分解能でバイアス補正された予測のアンサンブルを生成するために、CorrectorGANという条件付きジェネレーティブ・アドバイサル・ネットワークを訓練する。
一度訓練されたCorrectorGANは、1台のマシンで数秒で予測を生成する。
その結果、地域モデルの必要性や、データ駆動型ダウンスケーリングと修正手法がデータ・プール領域に移行できるかどうかについて、エキサイティングな疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2022-03-23T09:45:12Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。