論文の概要: Generative Adversarial Models for Extreme Geospatial Downscaling
- arxiv url: http://arxiv.org/abs/2402.14049v2
- Date: Wed, 7 Aug 2024 17:09:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 18:02:16.625504
- Title: Generative Adversarial Models for Extreme Geospatial Downscaling
- Title(参考訳): 極地空間ダウンスケーリングのための生成的逆数モデル
- Authors: Guiye Li, Guofeng Cao,
- Abstract要約: 本稿では,非常に高いスケーリング係数に対応可能な条件付きGANに基づく地理空間ダウンスケーリング手法について述べる。
この手法は、既存の手法では無視されがちなダウンスケーリングプロセスに固有の不確実性を明確に考慮する。
1つの決定論的結果ではなく、多量の高分解能サンプルを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing the challenges of climate change requires accurate and high-resolution mapping of geospatial data, especially climate and weather variables. However, many existing geospatial datasets, such as the gridded outputs of the state-of-the-art numerical climate models (e.g., general circulation models), are only available at very coarse spatial resolutions due to the model complexity and extremely high computational demand. Deep-learning-based methods, particularly generative adversarial networks (GANs) and their variants, have proved effective for refining natural images and have shown great promise in improving geospatial datasets. This paper describes a conditional GAN-based stochastic geospatial downscaling method that can accommodates very high scaling factors. Compared to most existing methods, the method can generate high-resolution accurate climate datasets from very low-resolution inputs. More importantly, the method explicitly considers the uncertainty inherent to the downscaling process that tends to be ignored in existing methods. Given an input, the method can produce a multitude of plausible high-resolution samples instead of one single deterministic result. These samples allow for an empirical exploration and inferences of model uncertainty and robustness. With a case study of gridded climate datasets (wind velocity and solar irradiance), we demonstrate the performances of the framework in downscaling tasks with large scaling factors (up to $64\times$) and highlight the advantages of the framework with a comprehensive comparison with commonly used and most recent downscaling methods, including area-to-point (ATP) kriging, deep image prior (DIP), enhanced super-resolution generative adversarial networks (ESRGAN), physics-informed resolution-enhancing GAN (PhIRE GAN), and an efficient diffusion model for remote sensing image super-resolution (EDiffSR).
- Abstract(参考訳): 気候変動の課題に対処するには、地理空間データ、特に気候と気象の変数の正確かつ高解像度なマッピングが必要である。
しかし、現状の数値気候モデル(例えば、一般的な循環モデル)のグリッド化された出力のような既存の地理空間データセットは、モデル複雑さと非常に高い計算要求のために、非常に粗い空間解像度でしか利用できない。
深層学習に基づく手法、特にGAN(Generative Adversarial Network)とその変種は、自然画像の精細化に有効であることが証明され、地理空間データセットの改善に大きな可能性を示している。
本稿では, 条件付きGANに基づく空間空間下降法について述べる。
既存のほとんどの手法と比較して、非常に低解像度の入力から高精度な気候データセットを生成することができる。
さらに重要なことは、既存の手法では無視されがちなダウンスケーリングプロセスに固有の不確かさを明示的に考慮することである。
入力が与えられた場合、1つの決定論的結果ではなく、多値な高分解能サンプルを生成することができる。
これらのサンプルは、モデルの不確実性と堅牢性の実証的な探索と推論を可能にする。
格子状気候データセット(風速と太陽照度)のケーススタディでは、大規模なスケーリング要因(最大6,4\times$)を備えたダウンスケーリングタスクにおけるフレームワークの性能を実証し、エリア・ツー・ポイント(ATP)クリグ、深部画像前処理(DIP)、拡張超高解像度生成敵ネットワーク(ESRGAN)、物理インフォームされた解像度向上GAN(PhIRE GAN)、リモートセンシング画像超高解像度(EDiffSR)の効率的な拡散モデル(EDiffSR)といった最近のダウンスケーリング手法と総合的に比較して、フレームワークの利点を強調した。
関連論文リスト
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
地球規模の気候モデルや衛星データから粗解射影を推定すると、下降問題は、より詳細な地域気候データを推定することを目的としている。
この問題は、気候変動による重大なリスクに対する効果的な適応、緩和、レジリエンスに社会的に不可欠である。
そこで本稿では, 空間的変動を抑えつつ, 微細な特徴を保ちながら, 空間的変動を捉えるためのKriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM)を提案する。
論文 参考訳(メタデータ) (2024-10-21T04:24:10Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
本稿では,気候データ,特に地域規模での降水量について,より詳細な生成モデルを提案する。
複数のLR気候変数に条件付き拡散確率モデルを用いる。
以上の結果から,下降気候データにおける条件拡散モデルの有効性が示唆された。
論文 参考訳(メタデータ) (2023-12-12T09:39:52Z) - Contrastive Learning for Climate Model Bias Correction and
Super-Resolution [0.0]
局地的な気候リスクを正確に見積もるために、後処理が必要である。
本稿では,画像スーパーレゾリューション(SR)とコントラスト学習生成対向ネットワーク(GAN)の組み合わせに基づく,この課題に対する代替手法を提案する。
われわれのモデルでは、NASAの2倍の空間分解能に到達し、日中の降水量と温度の両方において、同等または改善された偏差補正を達成できた。
論文 参考訳(メタデータ) (2022-11-10T19:45:17Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
逆ネットワークに基づく機械学習により、ダウンスケーリングにおける地域間空間相関を正確に再構築できることを示す。
提案手法は,気候変動の影響を地域間一貫した評価に有効である。
本稿では,低分解能降雨場を圧力場に置き換えた深部生成モデルに基づくダウンスケーリング手法の結果について述べる。
論文 参考訳(メタデータ) (2022-09-26T05:45:16Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
GAN(Generative Adversarial Network)は、コンピュータビジョンコミュニティによって超高解像度問題で成功することが実証されている。
GANとVAE-GANは、高分解能で空間的に整合した降水マップを作成しながら、最先端のポイントワイズポストプロセッシング手法の統計的特性と一致することを示す。
論文 参考訳(メタデータ) (2022-04-05T07:19:42Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
ランダムスパースセンサからフィールド量の推定を行うための,GAN(Super- resolution Generative Adversarial Network)フレームワークを提案する。
このアルゴリズムはランダムサンプリングを利用して、高解像度の基底分布の不完全ビューを提供する。
提案手法は, 流体流動シミュレーション, 海洋表面温度分布測定, 粒子画像速度測定データの合成データベースを用いて検証した。
論文 参考訳(メタデータ) (2022-02-23T18:57:53Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。