Advancing the State-of-the-Art for ECG Analysis through Structured State
Space Models
- URL: http://arxiv.org/abs/2211.07579v1
- Date: Mon, 14 Nov 2022 18:01:13 GMT
- Title: Advancing the State-of-the-Art for ECG Analysis through Structured State
Space Models
- Authors: Temesgen Mehari, Nils Strodthoff
- Abstract summary: This work explores the prospects of applying the recently introduced structured state space models (SSMs) as a particularly promising approach to ECG analysis.
We demonstrate that this approach leads to significant improvements over the current state-of-the-art for ECG classification.
The model's ability to capture long-term dependencies allows to shed light on long-standing questions in the literature such as the optimal sampling rate or window size to train classification models.
- Score: 3.822543555265593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of deep-learning-based ECG analysis has been largely dominated by
convolutional architectures. This work explores the prospects of applying the
recently introduced structured state space models (SSMs) as a particularly
promising approach due to its ability to capture long-term dependencies in time
series. We demonstrate that this approach leads to significant improvements
over the current state-of-the-art for ECG classification, which we trace back
to individual pathologies. Furthermore, the model's ability to capture
long-term dependencies allows to shed light on long-standing questions in the
literature such as the optimal sampling rate or window size to train
classification models. Interestingly, we find no evidence for using data
sampled at 500Hz as opposed to 100Hz and no advantages from extending the
model's input size beyond 3s. Based on this very promising first assessment,
SSMs could develop into a new modeling paradigm for ECG analysis.
Related papers
- GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - State Space Models as Foundation Models: A Control Theoretic Overview [3.3222241150972356]
In recent years, there has been a growing interest in integrating linear state-space models (SSM) in deep neural network architectures.
This paper is intended as a gentle introduction to SSM-based architectures for control theorists.
It provides a systematic review of the most successful SSM proposals and highlights their main features from a control theoretic perspective.
arXiv Detail & Related papers (2024-03-25T16:10:47Z) - Scaling Representation Learning from Ubiquitous ECG with State-Space
Models [28.776392386988043]
We introduce textbfWildECG, a pre-trained state-space model for representation learning from ECG signals.
We train this model in a self-supervised manner with 275,000 10s ECG recordings collected in the wild and evaluate it on a range of downstream tasks.
arXiv Detail & Related papers (2023-09-26T22:08:19Z) - Towards quantitative precision for ECG analysis: Leveraging state space
models, self-supervision and patient metadata [2.0777058026628583]
We investigate three elements aimed at improving the quantitative accuracy of automatic ECG analysis systems.
First, we exploit structured state space models (SSMs) to capture long-term dependencies in time series data.
Secondly, we demonstrate that self-supervised learning using contrastive predictive coding can further improve the performance of SSMs.
Finally, we incorporate basic demographic metadata alongside the ECG signal as input.
arXiv Detail & Related papers (2023-08-29T13:25:26Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Extending the Neural Additive Model for Survival Analysis with EHR Data [0.0]
We extend the Neural Additive Model (NAM) by incorporating pairwise feature interaction networks.
We show that within this extended framework, we can construct non-proportional hazard models.
We apply these model architectures to build an interpretable neural network survival model for gastric cancer prediction.
arXiv Detail & Related papers (2022-11-15T00:37:44Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
We first propose a new approach to quantify the temporal relationships between frames captured by CNN-based action models.
We then conduct comprehensive experiments and in-depth analysis to provide a better understanding of how temporal modeling is affected.
arXiv Detail & Related papers (2022-04-25T19:06:48Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left
Ventricle Delineation from Myocardial Velocity Mapping [1.8653386811342048]
We propose a novel fully automated framework incorporating a 3D-UNet backbone architecture with Embedded multichannel Attention mechanism and LSTM based Recurrent neural networks (RNN) for the MVM-CMR datasets.
By comparing the baseline model of 3D-UNet and ablation studies with and without embedded attentive LSTM modules and various loss functions, we can demonstrate that the proposed model has outperformed the state-of-the-art baseline models with significant improvement.
arXiv Detail & Related papers (2021-04-26T11:04:43Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.