Do Neural Networks Trained with Topological Features Learn Different
Internal Representations?
- URL: http://arxiv.org/abs/2211.07697v1
- Date: Mon, 14 Nov 2022 19:19:04 GMT
- Title: Do Neural Networks Trained with Topological Features Learn Different
Internal Representations?
- Authors: Sarah McGuire, Shane Jackson, Tegan Emerson, Henry Kvinge
- Abstract summary: We investigate whether a model trained with topological features learns internal representations of data that are fundamentally different than those learned by a model trained with the original raw data.
We find that structurally, the hidden representations of models trained and evaluated on topological features differ substantially compared to those trained and evaluated on the corresponding raw data.
We conjecture that this means that neural networks trained on raw data may extract some limited topological features in the process of making predictions.
- Score: 1.418465438044804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a growing body of work that leverages features extracted via
topological data analysis to train machine learning models. While this field,
sometimes known as topological machine learning (TML), has seen some notable
successes, an understanding of how the process of learning from topological
features differs from the process of learning from raw data is still limited.
In this work, we begin to address one component of this larger issue by asking
whether a model trained with topological features learns internal
representations of data that are fundamentally different than those learned by
a model trained with the original raw data. To quantify ``different'', we
exploit two popular metrics that can be used to measure the similarity of the
hidden representations of data within neural networks, neural stitching and
centered kernel alignment. From these we draw a range of conclusions about how
training with topological features does and does not change the representations
that a model learns. Perhaps unsurprisingly, we find that structurally, the
hidden representations of models trained and evaluated on topological features
differ substantially compared to those trained and evaluated on the
corresponding raw data. On the other hand, our experiments show that in some
cases, these representations can be reconciled (at least to the degree required
to solve the corresponding task) using a simple affine transformation. We
conjecture that this means that neural networks trained on raw data may extract
some limited topological features in the process of making predictions.
Related papers
- Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
We study how homeomorphism affects learned representation of a malware traffic dataset.
Our results suggest that although the details of learned representations and the specific coordinate system defined over the manifold of all parameters differ slightly, the functional approximations are the same.
arXiv Detail & Related papers (2020-09-16T15:37:44Z) - A Topological Framework for Deep Learning [0.7310043452300736]
We show that the classification problem in machine learning is always solvable under very mild conditions.
In particular, we show that a softmax classification network acts on an input topological space by a finite sequence of topological moves to achieve the classification task.
arXiv Detail & Related papers (2020-08-31T15:56:42Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Similarity of Neural Networks with Gradients [8.804507286438781]
We propose to leverage both feature vectors and gradient ones into designing the representation of a neural network.
We show that the proposed approach provides a state-of-the-art method for computing similarity of neural networks.
arXiv Detail & Related papers (2020-03-25T17:04:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.