論文の概要: Self-supervised remote sensing feature learning: Learning Paradigms,
Challenges, and Future Works
- arxiv url: http://arxiv.org/abs/2211.08129v1
- Date: Tue, 15 Nov 2022 13:32:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 13:24:59.851223
- Title: Self-supervised remote sensing feature learning: Learning Paradigms,
Challenges, and Future Works
- Title(参考訳): セルフ教師付きリモートセンシング機能学習:学習パラダイム,課題,今後の課題
- Authors: Chao Tao, Ji Qi, Mingning Guo, Qing Zhu, Haifeng Li
- Abstract要約: 本稿では、非教師付き特徴学習(USFL)、教師付き特徴学習(SFL)、自己教師付き特徴学習(SSFL)の3つの特徴学習パラダイムを分析し比較する。
この統合されたフレームワークでは、RSI理解タスクにおける他の2つの学習パラダイムよりもSSFLの利点を分析する。
SSFL信号と事前学習データが学習特徴に与える影響を分析し,RSI特徴学習を改善するための洞察を提供する。
- 参考スコア(独自算出の注目度): 9.36487195178422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has achieved great success in learning features from massive
remote sensing images (RSIs). To better understand the connection between
feature learning paradigms (e.g., unsupervised feature learning (USFL),
supervised feature learning (SFL), and self-supervised feature learning
(SSFL)), this paper analyzes and compares them from the perspective of feature
learning signals, and gives a unified feature learning framework. Under this
unified framework, we analyze the advantages of SSFL over the other two
learning paradigms in RSIs understanding tasks and give a comprehensive review
of the existing SSFL work in RS, including the pre-training dataset,
self-supervised feature learning signals, and the evaluation methods. We
further analyze the effect of SSFL signals and pre-training data on the learned
features to provide insights for improving the RSI feature learning. Finally,
we briefly discuss some open problems and possible research directions.
- Abstract(参考訳): 深層学習は、大規模なリモートセンシング画像(RSI)から特徴を学習することで大きな成功を収めた。
特徴学習パラダイム(例えば、教師なし特徴学習(USFL)、教師付き特徴学習(SFL)、自己教師付き特徴学習(SSFL))の関連性をよりよく理解するために、特徴学習信号の観点からそれらを分析し比較し、統一された特徴学習フレームワークを提供する。
本研究では,RSIの理解タスクにおける他の2つの学習パラダイムに対するSSFLの利点を分析し,事前学習データセット,自己教師付き特徴学習信号,評価方法など,既存のSSFLのRSにおける作業の包括的レビューを行う。
さらに、SSFL信号と事前学習データが学習特徴に与える影響を分析し、RSI特徴学習を改善するための洞察を提供する。
最後に,いくつかの問題と研究の方向性について概説する。
関連論文リスト
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Language-guided Skill Learning with Temporal Variational Inference [38.733622157088035]
専門家によるデモンストレーションからスキル発見のためのアルゴリズムを提案する。
以上の結果から,本手法を応用したエージェントが,学習の促進に役立つスキルを発見できることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T07:19:23Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Functional Knowledge Transfer with Self-supervised Representation
Learning [11.566644244783305]
本研究では,機能的知識伝達の方向における自己指導型表現学習の未探索ユーザビリティについて検討する。
本研究では,自己教師型学習課題と教師型学習課題の協調最適化により,機能的知識伝達を実現する。
論文 参考訳(メタデータ) (2023-03-12T21:14:59Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
「生涯学習」システムには,1)継続的学習,2)伝達と適応,3)拡張性があります。
この一連のメトリクスは、様々な複雑な生涯学習システムの開発に役立てることができることを示す。
論文 参考訳(メタデータ) (2023-01-18T21:58:54Z) - Contrastive Learning with Boosted Memorization [36.957895270908324]
自己教師付き学習は、視覚的およびテキスト的データの表現学習において大きな成功を収めた。
近年の自己指導型長期学習の試行は、損失視点やモデル視点の再バランスによって行われる。
本稿では,ラベルを意識しないコンテキストにおける長期学習を強化するために,新しいBCL法を提案する。
論文 参考訳(メタデータ) (2022-05-25T11:54:22Z) - DMCNet: Diversified Model Combination Network for Understanding
Engagement from Video Screengrabs [0.4397520291340695]
エンゲージメントは知的教育インタフェースの開発において重要な役割を果たしている。
非深さ学習モデルは、Histogram of Oriented Gradient(HOG)、SVM(Support Vector Machine)、SIFT(Scale Invariant Feature Transform)、SURF(Speeded Up Robust Features)といった一般的なアルゴリズムの組み合わせに基づいている。
ディープラーニングには、Densely Connected Convolutional Networks (DenseNet-121)、Residual Network (ResNet-18)、MobileNetV1がある。
論文 参考訳(メタデータ) (2022-04-13T15:24:38Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Toward Understanding the Feature Learning Process of Self-supervised
Contrastive Learning [43.504548777955854]
本研究では,その特徴学習過程を解析することにより,ニューラルネットワークの特徴表現のコントラスト学習について検討する。
textbfReLUネットワークを用いたコントラスト学習は、適切な拡張が採用されれば、所望のスパース特徴を確実に学習できることを実証する。
論文 参考訳(メタデータ) (2021-05-31T16:42:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。