論文の概要: A Comparative Study of Machine Learning and Deep Learning Techniques for
Prediction of Co2 Emission in Cars
- arxiv url: http://arxiv.org/abs/2211.08268v1
- Date: Tue, 15 Nov 2022 16:20:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 13:42:33.380346
- Title: A Comparative Study of Machine Learning and Deep Learning Techniques for
Prediction of Co2 Emission in Cars
- Title(参考訳): 自動車におけるCO2排出予測のための機械学習とディープラーニング技術の比較検討
- Authors: Samveg Shah, Shubham Thakar, Kashish Jain, Bhavya Shah, Sudhir Dhage
- Abstract要約: 政府が供給するCO2番号は、道路上での自動車の性能を正確に反映していないという証拠がいくつかある。
どのアルゴリズムとモデルが最も良い結果をもたらすかを決定するために、それらを全て比較し、それらを組み立てる新しい方法を探究した。
これは、世界温度の上昇を予見し、電気自動車の導入のような重要な政策決定を下すのに使うことができる。
- 参考スコア(独自算出の注目度): 2.362412515574206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most recent concern of all people on Earth is the increase in the
concentration of greenhouse gas in the atmosphere. The concentration of these
gases has risen rapidly over the last century and if the trend continues it can
cause many adverse climatic changes. There have been ways implemented to curb
this by the government by limiting processes that emit a higher amount of CO2,
one such greenhouse gas. However, there is mounting evidence that the CO2
numbers supplied by the government do not accurately reflect the performance of
automobiles on the road. Our proposal of using artificial intelligence
techniques to improve a previously rudimentary process takes a radical tack,
but it fits the bill given the situation. To determine which algorithms and
models produce the greatest outcomes, we compared them all and explored a novel
method of ensembling them. Further, this can be used to foretell the rise in
global temperature and to ground crucial policy decisions like the adoption of
electric vehicles. To estimate emissions from vehicles, we used machine
learning, deep learning, and ensemble learning on a massive dataset.
- Abstract(参考訳): 地球上のすべての人々の最も最近の関心事は、大気中の温室効果ガス濃度の増加である。
これらのガスの濃度は過去1世紀で急速に上昇しており、この傾向が続くと、多くの悪質な気候変化を引き起こす可能性がある。
温室効果ガスである高濃度のco2を排出するプロセスを制限することで、政府によってこれを抑止する方法が実行されてきた。
しかし、政府が供給するCO2番号は、道路上での自動車の性能を正確に反映していないという証拠がいくつかある。
先進的なプロセスを改善するために人工知能技術を使うという提案は急進的だが、その状況を考えると、この法案に合致する。
どのアルゴリズムとモデルが最も良い結果をもたらすかを決定するために、それらを全て比較し、それらを組み立てる新しい方法を模索した。
さらに、これは世界温度の上昇を予見し、電気自動車の導入のような重要な政策決定を下すためにも使用できる。
車両からの排出量を見積もるために、大量のデータセットで機械学習、ディープラーニング、アンサンブル学習を使いました。
関連論文リスト
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques [4.106914713812204]
世界規模の二酸化炭素排出量を効果的に削減するためには、二酸化炭素排出量の傾向を予測し、その排出量パターンに基づいて国を分類することが不可欠だ」と述べた。
本稿では,HDI(Human Development Index)を有する20カ国におけるCO2排出量の決定要因について,25年間にわたる経済,環境,エネルギー利用,再生可能資源に関連する要因について,詳細な比較研究を行った。
論文 参考訳(メタデータ) (2024-05-01T21:00:02Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Deep Reinforcement Learning-based Intelligent Traffic Signal Controls
with Optimized CO2 emissions [6.851243292023835]
交通ネットワークは、人間の健康や環境に悪影響を及ぼし、交通渋滞に寄与する準最適制御政策の課題に直面している。
文献における適応的な信号制御装置はいくつかあるが、それらの比較性能について限定的な研究がなされている。
EcoLightは,CO2排出量を削減するだけでなく,旅行時間などの指標で競合する結果が得られる強化学習アルゴリズムの報酬形成手法である。
論文 参考訳(メタデータ) (2023-10-19T19:54:47Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
メタンは最も強力な温室効果ガスの1つである。
現在のメタン放出モニタリング技術は、近似的な放出要因や自己報告に依存している。
深層学習法は、Sentinel-2衛星マルチスペクトルデータにおけるメタン漏れの自動検出に利用することができる。
論文 参考訳(メタデータ) (2023-08-21T19:36:50Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Carbon Emission Prediction on the World Bank Dataset for Canada [0.9256577986166795]
本稿では,今後数年間の二酸化炭素排出量(CO2排出量)の予測方法について述べる。
この予測は過去50年間のデータに基づいている。
このデータセットには1960年から2018年までの全国のCO2排出量(一人当たりメートル)が含まれている。
論文 参考訳(メタデータ) (2022-11-26T07:04:52Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Rapid Assessments of Light-Duty Gasoline Vehicle Emissions Using On-Road
Remote Sensing and Machine Learning [18.334974501482275]
道路上での自動車排ガスのリアルタイムかつ正確な評価は、都市大気の質と健康政策において中心的な役割を果たす。
ここでは、オンロードリモートセンシング(ORRS)測定をI/Mレコードに関連付ける103831光デューティガソリン車を含む、ユニークなデータセットを構築します。
ニューラルネットワーク(NN)、極勾配強化(XGBoost)、ランダムフォレスト(ランダムフォレスト)を含む3つの機械学習アルゴリズムを統合するアンサンブルモデルフレームワークを開発した。
論文 参考訳(メタデータ) (2021-10-01T08:37:06Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
気候変動の影響を制限するため、低炭素電力供給への移行が不可欠である。
二酸化炭素排出量の削減は、世界がピーク点に達するのを防ぐのに役立ちます。
排気ガスの排出は、世界中の気象条件の極端に繋がる可能性がある。
論文 参考訳(メタデータ) (2021-09-25T12:37:05Z) - Towards Indirect Top-Down Road Transport Emissions Estimation [2.18675052740811]
道路輸送は、気候変動に影響を与える温室効果ガス(GHG)排出量の最大セクターの1つです。
衛星画像を用いた道路交通の間接的トップダウン推定を行う機械学習モデルを開発した。
論文 参考訳(メタデータ) (2021-03-16T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。