Generative Long-form Question Answering: Relevance, Faithfulness and
Succinctness
- URL: http://arxiv.org/abs/2211.08386v1
- Date: Tue, 15 Nov 2022 18:36:01 GMT
- Title: Generative Long-form Question Answering: Relevance, Faithfulness and
Succinctness
- Authors: Dan Su
- Abstract summary: Long Form Question Answering (LFQA) aims to generate an in-depth, paragraph-length answer for a given question.
Few works have been done to build an effective LFQA system.
We pioneered the research direction to improve the answer quality in terms of 1) query-relevance, 2) answer faithfulness, and 3) answer succinctness.
- Score: 9.770663160391287
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this thesis, we investigated the relevance, faithfulness, and succinctness
aspects of Long Form Question Answering (LFQA). LFQA aims to generate an
in-depth, paragraph-length answer for a given question, to help bridge the gap
between real scenarios and the existing open-domain QA models which can only
extract short-span answers. LFQA is quite challenging and under-explored. Few
works have been done to build an effective LFQA system. It is even more
challenging to generate a good-quality long-form answer relevant to the query
and faithful to facts, since a considerable amount of redundant, complementary,
or contradictory information will be contained in the retrieved documents.
Moreover, no prior work has been investigated to generate succinct answers. We
are among the first to research the LFQA task. We pioneered the research
direction to improve the answer quality in terms of 1) query-relevance, 2)
answer faithfulness, and 3) answer succinctness.
Related papers
- Retrieving Contextual Information for Long-Form Question Answering using Weak Supervision [23.394961301584026]
Long-form question answering (LFQA) aims at generating in-depth answers to end-user questions.
We propose and compare different weak supervision techniques to optimize retrieval for contextual information.
We show that long-form answers often anticipate likely follow-up questions.
arXiv Detail & Related papers (2024-10-11T08:42:02Z) - RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering [61.19126689470398]
Long-form RobustQA (LFRQA) is a new dataset covering 26K queries and large corpora across seven different domains.
We show via experiments that RAG-QA Arena and human judgments on answer quality are highly correlated.
Only 41.3% of the most competitive LLM's answers are preferred to LFRQA's answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research.
arXiv Detail & Related papers (2024-07-19T03:02:51Z) - Chain-of-Discussion: A Multi-Model Framework for Complex Evidence-Based Question Answering [55.295699268654545]
We propose a novel Chain-of-Discussion framework to leverage the synergy among open-source Large Language Models.
Our experiments show that discussions among multiple LLMs play a vital role in enhancing the quality of answers.
arXiv Detail & Related papers (2024-02-26T05:31:34Z) - Long-form Question Answering: An Iterative Planning-Retrieval-Generation
Approach [28.849548176802262]
Long-form question answering (LFQA) poses a challenge as it involves generating detailed answers in the form of paragraphs.
We propose an LFQA model with iterative Planning, Retrieval, and Generation.
We find that our model outperforms the state-of-the-art models on various textual and factual metrics for the LFQA task.
arXiv Detail & Related papers (2023-11-15T21:22:27Z) - Modern Question Answering Datasets and Benchmarks: A Survey [5.026863544662493]
Question Answering (QA) is one of the most important natural language processing (NLP) tasks.
It aims using NLP technologies to generate a corresponding answer to a given question based on the massive unstructured corpus.
In this paper, we investigate influential QA datasets that have been released in the era of deep learning.
arXiv Detail & Related papers (2022-06-30T05:53:56Z) - Modeling Multi-hop Question Answering as Single Sequence Prediction [88.72621430714985]
We propose a simple generative approach (PathFid) that extends the task beyond just answer generation.
PathFid explicitly models the reasoning process to resolve the answer for multi-hop questions.
Our experiments demonstrate that PathFid leads to strong performance gains on two multi-hop QA datasets.
arXiv Detail & Related papers (2022-05-18T21:57:59Z) - ASQA: Factoid Questions Meet Long-Form Answers [35.11889930792675]
This work focuses on factoid questions that are ambiguous, that is, have different correct answers depending on interpretation.
Answers to ambiguous questions should synthesize factual information from multiple sources into a long-form summary.
We use this notion of correctness to define an automated metric of performance for ASQA.
arXiv Detail & Related papers (2022-04-12T21:58:44Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
We propose a framework with Multifaceted Improvements for Conversational open-domain Question Answering (MICQA)
Firstly, the proposed KL-divergence based regularization is able to lead to a better question understanding for retrieval and answer reading.
Second, the added post-ranker module can push more relevant passages to the top placements and be selected for reader with a two-aspect constrains.
Third, the well designed curriculum learning strategy effectively narrows the gap between the golden passage settings of training and inference, and encourages the reader to find true answer without the golden passage assistance.
arXiv Detail & Related papers (2022-04-01T07:54:27Z) - Read before Generate! Faithful Long Form Question Answering with Machine
Reading [77.17898499652306]
Long-form question answering (LFQA) aims to generate a paragraph-length answer for a given question.
We propose a new end-to-end framework that jointly models answer generation and machine reading.
arXiv Detail & Related papers (2022-03-01T10:41:17Z) - Hurdles to Progress in Long-form Question Answering [34.805039943215284]
We show that the task formulation raises fundamental challenges regarding evaluation and dataset creation.
We first design a new system that relies on sparse attention and contrastive retriever learning to achieve state-of-the-art performance.
arXiv Detail & Related papers (2021-03-10T20:32:30Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
We introduce two approaches to improve unsupervised Question Answering (QA)
First, we harvest lexically and syntactically divergent questions from Wikipedia to automatically construct a corpus of question-answer pairs (named as RefQA)
Second, we take advantage of the QA model to extract more appropriate answers, which iteratively refines data over RefQA.
arXiv Detail & Related papers (2020-05-06T15:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.