RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering
- URL: http://arxiv.org/abs/2407.13998v2
- Date: Thu, 3 Oct 2024 00:13:19 GMT
- Title: RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering
- Authors: Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan Wang, Lan Liu, William Yang Wang, Bonan Min, Vittorio Castelli,
- Abstract summary: Long-form RobustQA (LFRQA) is a new dataset covering 26K queries and large corpora across seven different domains.
We show via experiments that RAG-QA Arena and human judgments on answer quality are highly correlated.
Only 41.3% of the most competitive LLM's answers are preferred to LFRQA's answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research.
- Score: 61.19126689470398
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Question answering based on retrieval augmented generation (RAG-QA) is an important research topic in NLP and has a wide range of real-world applications. However, most existing datasets for this task are either constructed using a single source corpus or consist of short extractive answers, which fall short of evaluating large language model (LLM) based RAG-QA systems on cross-domain generalization. To address these limitations, we create Long-form RobustQA (LFRQA), a new dataset comprising human-written long-form answers that integrate short extractive answers from multiple documents into a single, coherent narrative, covering 26K queries and large corpora across seven different domains. We further propose RAG-QA Arena by directly comparing model-generated answers against LFRQA's answers using LLMs as evaluators. We show via extensive experiments that RAG-QA Arena and human judgments on answer quality are highly correlated. Moreover, only 41.3% of the most competitive LLM's answers are preferred to LFRQA's answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research.
Related papers
- RAG-ConfusionQA: A Benchmark for Evaluating LLMs on Confusing Questions [52.33835101586687]
Conversational AI agents use Retrieval Augmented Generation (RAG) to provide verifiable document-grounded responses to user inquiries.
This paper presents a novel synthetic data generation method to efficiently create a diverse set of context-grounded confusing questions from a given document corpus.
arXiv Detail & Related papers (2024-10-18T16:11:29Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge.
To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources.
We propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers.
arXiv Detail & Related papers (2024-08-15T22:34:44Z) - CRAG -- Comprehensive RAG Benchmark [58.15980697921195]
Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)'s deficiency in lack of knowledge.
Existing RAG datasets do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks.
To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG)
CRAG is a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search.
arXiv Detail & Related papers (2024-06-07T08:43:07Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
We propose a simple yet effective framework to enhance open-domain question answering (ODQA) with large language models (LLMs)
SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval (SuRe)
Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches.
arXiv Detail & Related papers (2024-04-17T01:15:54Z) - Long-form Question Answering: An Iterative Planning-Retrieval-Generation
Approach [28.849548176802262]
Long-form question answering (LFQA) poses a challenge as it involves generating detailed answers in the form of paragraphs.
We propose an LFQA model with iterative Planning, Retrieval, and Generation.
We find that our model outperforms the state-of-the-art models on various textual and factual metrics for the LFQA task.
arXiv Detail & Related papers (2023-11-15T21:22:27Z) - Toward Unsupervised Realistic Visual Question Answering [70.67698100148414]
We study the problem of realistic VQA (RVQA), where a model has to reject unanswerable questions (UQs) and answer answerable ones (AQs)
We first point out 2 drawbacks in current RVQA research, where (1) datasets contain too many unchallenging UQs and (2) a large number of annotated UQs are required for training.
We propose a new testing dataset, RGQA, which combines AQs from an existing VQA dataset with around 29K human-annotated UQs.
This combines pseudo UQs obtained by randomly pairing images and questions, with an
arXiv Detail & Related papers (2023-03-09T06:58:29Z) - RoMQA: A Benchmark for Robust, Multi-evidence, Multi-answer Question
Answering [87.18962441714976]
We introduce RoMQA, the first benchmark for robust, multi-evidence, multi-answer question answering (QA)
We evaluate state-of-the-art large language models in zero-shot, few-shot, and fine-tuning settings, and find that RoMQA is challenging.
Our results show that RoMQA is a challenging benchmark for large language models, and provides a quantifiable test to build more robust QA methods.
arXiv Detail & Related papers (2022-10-25T21:39:36Z) - Towards Automatic Generation of Questions from Long Answers [11.198653485869935]
We propose a novel evaluation benchmark to assess the performance of existing AQG systems for long-text answers.
We empirically demonstrate that the performance of existing AQG methods significantly degrades as the length of the answer increases.
Transformer-based methods outperform other existing AQG methods on long answers in terms of automatic as well as human evaluation.
arXiv Detail & Related papers (2020-04-10T16:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.