論文の概要: Online Anomalous Subtrajectory Detection on Road Networks with Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2211.08415v1
- Date: Sat, 12 Nov 2022 15:17:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 16:04:20.997495
- Title: Online Anomalous Subtrajectory Detection on Road Networks with Deep
Reinforcement Learning
- Title(参考訳): 深層強化学習による道路網上のオンライン異常部分軌道検出
- Authors: Qianru Zhang, Zheng Wang, Cheng Long, Chao Huang, Siu-Ming Yiu, Yiding
Liu, Gao Cong, Jieming Shi
- Abstract要約: 我々はRL4OASDと呼ばれる新しい強化学習ベースのソリューションを提案する。
RL4OASDには2つのネットワークがあり、1つは道路ネットワークと軌道の特徴を学習し、もう1つは異常なサブ軌道を検出する。
- 参考スコア(独自算出の注目度): 38.71141801699763
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Detecting anomalous trajectories has become an important task in many
location-based applications. While many approaches have been proposed for this
task, they suffer from various issues including (1) incapability of detecting
anomalous subtrajectories, which are finer-grained anomalies in trajectory
data, and/or (2) non-data driven, and/or (3) requirement of sufficient
supervision labels which are costly to collect. In this paper, we propose a
novel reinforcement learning based solution called RL4OASD, which avoids all
aforementioned issues of existing approaches. RL4OASD involves two networks,
one responsible for learning features of road networks and trajectories and the
other responsible for detecting anomalous subtrajectories based on the learned
features, and the two networks can be trained iteratively without labeled data.
Extensive experiments are conducted on two real datasets, and the results show
that our solution can significantly outperform the state-of-the-art methods
(with 20-30% improvement) and is efficient for online detection (it takes less
than 0.1ms to process each newly generated data point).
- Abstract(参考訳): 異常軌道の検出は多くの位置ベースアプリケーションにおいて重要な課題となっている。
この課題には多くのアプローチが提案されているが、(1)軌道データ内の細粒度の異常を検出できないこと、(2)非データ駆動であること、(3)収集に要する十分な監督ラベルの要求など、様々な問題がある。
本稿では,既存の手法の問題点をすべて回避した新しい強化学習型ソリューションrl4oasdを提案する。
RL4OASDには2つのネットワークがあり、1つは道路ネットワークと軌道の特徴を学習し、もう1つは学習した特徴に基づいて異常なサブトラジェクトリを検出する。
2つの実データに対して大規模な実験を行い、その結果、我々のソリューションは最先端の手法(20~30%の改善)を著しく上回り、オンライン検出(新たに生成された各データポイントの処理に0.1ms未満の時間を要する)に効率的であることを示した。
関連論文リスト
- A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series [45.31237646796715]
この研究は、複雑な分布と高次元分布をモデル化する能力で有名な物理インフォームドリアルNVPニューラルネットワークを活用する新しいアプローチを提案する。
実験には、セルフスーパービジョンによる事前トレーニング、マルチタスク学習、スタンドアロンのセルフ教師付きトレーニングなど、さまざまな構成が含まれている。
結果は、すべての設定で大幅にパフォーマンスが向上したことを示している。
論文 参考訳(メタデータ) (2024-07-03T07:19:41Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
ディープニューラルネットワーク(DNN)に基づく2次元物体検出のための新しいイントロスペクションソリューションを提案する。
KITTIとBDDのデータセットで評価された1段階および2段階のオブジェクト検出器を用いて,2次元オブジェクト検出におけるエラー検出のためのSOTAイントロスペクション機構を実装した。
性能評価の結果,提案手法はSOTA法より優れており,BDDデータセットのエラー率を9%から17%まで絶対的に削減できることがわかった。
論文 参考訳(メタデータ) (2024-03-02T10:56:14Z) - Adaptive Model Pooling for Online Deep Anomaly Detection from a Complex
Evolving Data Stream [15.599296461516984]
本稿では,自己エンコーダに基づくディープ・アノマリー検出手法を用いて,オンラインのディープ・アノマリー検出のためのフレームワークARCUSを提案する。
適応型モデルプーリングアプローチと2つの新しいテクニックを使って、複雑なデータストリームと進化するデータストリームを処理する。
高次元とコンセプトドリフトの両方の10データセットを用いた総合的な実験において、ARCUSは、最先端のオートエンコーダベースの手法のストリーミング変種を、それぞれ最大22%と37%の精度で検出した。
論文 参考訳(メタデータ) (2022-06-09T23:11:43Z) - Meta-learning with GANs for anomaly detection, with deployment in
high-speed rail inspection system [7.220842608593749]
ビッグデータによるAI時代における異常検出の主な課題は、潜在的な異常タイプに関する事前知識の欠如である。
本稿では,GAN(Generative Adversarial Network)の概念を,損失関数の適切な選択に取り入れる。
当社のフレームワークは2021年以降、中国の5つの高速鉄道に配備されており、99.7%以上の作業負荷を削減し、96.7%の検査時間を節約している。
論文 参考訳(メタデータ) (2022-02-11T17:43:49Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
既存の生成逆数ネットワーク(GAN)は、主に実物から合成サンプルを作成するために使用される。
提案手法では,Bidirectional GAN (Bi-GAN) に基づく一級分類器として,訓練されたエンコーダ識別器を構築した。
実験結果から,提案手法はネットワーク侵入検出タスクにおいて有効であることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T23:51:11Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。