論文の概要: Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations
- arxiv url: http://arxiv.org/abs/2403.01172v1
- Date: Sat, 2 Mar 2024 10:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 14:59:58.197571
- Title: Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations
- Title(参考訳): 学習表現を用いた自動運転システムにおける2次元物体検出のリアルタイムイントロスペクション
- Authors: Hakan Yekta Yatbaz, Mehrdad Dianati, Konstantinos Koufos, Roger
Woodman
- Abstract要約: ディープニューラルネットワーク(DNN)に基づく2次元物体検出のための新しいイントロスペクションソリューションを提案する。
KITTIとBDDのデータセットで評価された1段階および2段階のオブジェクト検出器を用いて,2次元オブジェクト検出におけるエラー検出のためのSOTAイントロスペクション機構を実装した。
性能評価の結果,提案手法はSOTA法より優れており,BDDデータセットのエラー率を9%から17%まで絶対的に削減できることがわかった。
- 参考スコア(独自算出の注目度): 13.529124221397822
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reliable detection of various objects and road users in the surrounding
environment is crucial for the safe operation of automated driving systems
(ADS). Despite recent progresses in developing highly accurate object detectors
based on Deep Neural Networks (DNNs), they still remain prone to detection
errors, which can lead to fatal consequences in safety-critical applications
such as ADS. An effective remedy to this problem is to equip the system with
run-time monitoring, named as introspection in the context of autonomous
systems. Motivated by this, we introduce a novel introspection solution, which
operates at the frame level for DNN-based 2D object detection and leverages
neural network activation patterns. The proposed approach pre-processes the
neural activation patterns of the object detector's backbone using several
different modes. To provide extensive comparative analysis and fair comparison,
we also adapt and implement several state-of-the-art (SOTA) introspection
mechanisms for error detection in 2D object detection, using one-stage and
two-stage object detectors evaluated on KITTI and BDD datasets. We compare the
performance of the proposed solution in terms of error detection, adaptability
to dataset shift, and, computational and memory resource requirements. Our
performance evaluation shows that the proposed introspection solution
outperforms SOTA methods, achieving an absolute reduction in the missed error
ratio of 9% to 17% in the BDD dataset.
- Abstract(参考訳): 自動走行システム(ADS)の安全運転には,周辺環境における各種物体や道路利用者の信頼性の高い検出が不可欠である。
近年、Deep Neural Networks (DNN) に基づく高精度な物体検出装置の開発が進んでいるが、それでもなお検出エラーが発生しやすいため、ADSのような安全クリティカルなアプリケーションでは致命的な結果をもたらす可能性がある。
この問題に対する効果的な解決策は、自律システムのコンテキストにおけるイントロスペクション(introspection)と呼ばれるランタイム監視をシステムに提供することである。
そこで我々は,DNNに基づく2次元物体検出のためのフレームレベルで動作し,ニューラルネットワークの活性化パターンを活用する新しいイントロスペクションソリューションを提案する。
提案手法は、複数の異なるモードを用いて、物体検出器のバックボーンの神経活性化パターンを前処理する。
KITTIとBDDのデータセットで評価された1段階および2段階のオブジェクト検出器を用いて,2次元オブジェクト検出におけるエラー検出のための複数の最先端(SOTA)イントロスペクション機構を適用および実装する。
提案手法の性能を,エラー検出,データセットシフトへの適応性,計算量およびメモリ資源要件の観点から比較した。
性能評価の結果,提案手法はSOTA法より優れており,BDDデータセットのエラー率を9%から17%まで絶対的に削減できることがわかった。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Integrity Monitoring of 3D Object Detection in Automated Driving Systems using Raw Activation Patterns and Spatial Filtering [12.384452095533396]
ディープニューラルネットワーク(DNN)モデルは、自動運転システム(ADS)における物体検出に広く利用されている。
しかし、そのようなモデルは、重大な安全性に影響を及ぼす可能性のあるエラーを起こしやすい。
このようなエラーを検知することを目的とした検査・自己評価モデルは、ADSの安全な配置において最重要となる。
論文 参考訳(メタデータ) (2024-05-13T10:03:03Z) - Run-time Monitoring of 3D Object Detection in Automated Driving Systems Using Early Layer Neural Activation Patterns [12.384452095533396]
自動運転システム(ADS)の統合性監視は安全性を確保する上で最重要である。
近年のディープニューラルネットワーク(DNN)を用いた物体検出装置の進歩,検出誤差への感受性は重要な懸念点である。
論文 参考訳(メタデータ) (2024-04-11T12:24:47Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - A DCNN-based Arbitrarily-Oriented Object Detector for Quality Control
and Inspection Application [10.076629346147639]
軽量ニューラルネットワークを利用して回帰法を用いて指向性検出結果を得る。
提案手法の第1段階では,2つのシナリオで考慮される小型ターゲットを検出できる。
第2段階では、単純さにもかかわらず、高いランニング効率を維持しながら延長ターゲットを検出することが効率的です。
論文 参考訳(メタデータ) (2021-01-19T00:23:27Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
本稿では,事前学習した畳み込みニューラルネットモデルを用いて特徴抽出とコンテキストマイニングを行う方法について述べる。
我々は,高レベルの特徴から文脈特性を導出し,ビデオ異常検出法の性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-10-06T00:26:14Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。