論文の概要: LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2211.08525v1
- Date: Tue, 15 Nov 2022 21:51:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 14:44:57.087181
- Title: LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection
- Title(参考訳): LEAN-DMKDE:異常検出のための量子潜在密度推定
- Authors: Joseph Gallego-Mejia, Oscar Bustos-Brinez, Fabio A. Gonz\'alez
- Abstract要約: この方法は、データの低次元表現を学習するためのオートエンコーダと密度推定モデルを組み合わせる。
本手法は, 推定密度に基づいて, 新しい試料の正規度を推定する。
実験結果から,本手法が他の最先端手法と同等あるいは同等に動作することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an anomaly detection model that combines the strong
statistical foundation of density-estimation-based anomaly detection methods
with the representation-learning ability of deep-learning models. The method
combines an autoencoder, for learning a low-dimensional representation of the
data, with a density-estimation model based on random Fourier features and
density matrices in an end-to-end architecture that can be trained using
gradient-based optimization techniques. The method predicts a degree of
normality for new samples based on the estimated density. A systematic
experimental evaluation was performed on different benchmark datasets. The
experimental results show that the method performs on par with or outperforms
other state-of-the-art methods.
- Abstract(参考訳): 本稿では,密度推定に基づく異常検出手法の強い統計的基礎と,ディープラーニングモデルの表現学習能力を組み合わせた異常検出モデルを提案する。
この手法は、データの低次元表現を学習するためのオートエンコーダと、勾配に基づく最適化手法を用いてトレーニング可能なエンドツーエンドアーキテクチャにおけるランダムフーリエ特徴と密度行列に基づく密度推定モデルを組み合わせる。
本手法は, 推定密度に基づいて新しい試料の正常度を予測する。
異なるベンチマークデータセットで系統的な実験評価を行った。
実験結果から,本手法が他の最先端手法と同等あるいは同等に動作することを示す。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Latent Anomaly Detection Through Density Matrices [3.843839245375552]
本稿では,密度推定に基づく異常検出手法の頑健な統計的原理と深層学習モデルの表現学習能力を組み合わせた,新しい異常検出フレームワークを提案する。
このフレームワークから派生した手法は、浅いアプローチと、データの低次元表現を学習するためにオートエンコーダを統合するディープアプローチの2つの異なるバージョンで示される。
論文 参考訳(メタデータ) (2024-08-14T15:44:51Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - AD-DMKDE: Anomaly Detection through Density Matrices and Fourier
Features [0.0]
この方法は、カーネル密度推定(KDE)の効率的な近似と見なすことができる。
提案手法を, 各種データセット上での11種類の最先端異常検出手法と体系的に比較した。
論文 参考訳(メタデータ) (2022-10-26T15:43:16Z) - Quantum Adaptive Fourier Features for Neural Density Estimation [0.0]
本稿では,カーネル密度推定の一種とみなすニューラル密度推定法を提案する。
この方法は密度行列、量子力学で使われる形式主義、適応フーリエ特徴に基づいている。
本手法は, 異なる合成および実データを用いて評価し, その性能を最先端のニューラル密度推定法と比較した。
論文 参考訳(メタデータ) (2022-08-01T01:39:11Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z) - Learning Generative Models using Denoising Density Estimators [29.068491722778827]
縮退密度推定器(DDE)に基づく新しい生成モデルを提案する。
我々の主な貢献は、KL分割を直接最小化することで生成モデルを得る新しい技術である。
実験結果から, 生成モデル学習における密度推定と競争性能が大幅に向上した。
論文 参考訳(メタデータ) (2020-01-08T20:30:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。