論文の概要: GC-GRU-N for Traffic Prediction using Loop Detector Data
- arxiv url: http://arxiv.org/abs/2211.08541v1
- Date: Sun, 13 Nov 2022 06:32:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 16:16:07.648240
- Title: GC-GRU-N for Traffic Prediction using Loop Detector Data
- Title(参考訳): ループ検出器データを用いた交通予測のためのGC-GRU-N
- Authors: Maged Shoman, Armstrong Aboah, Abdulateef Daud, Yaw Adu-Gyamfi
- Abstract要約: シアトルのループ検出器のデータを15分以上収集し、その問題を時空で再現する。
モデルは、最速の推論時間と非常に近いパフォーマンスで第2位(トランスフォーマー)。
- 参考スコア(独自算出の注目度): 5.735035463793008
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Because traffic characteristics display stochastic nonlinear spatiotemporal
dependencies, traffic prediction is a challenging task. In this paper develop a
graph convolution gated recurrent unit (GC GRU N) network to extract the
essential Spatio temporal features. we use Seattle loop detector data
aggregated over 15 minutes and reframe the problem through space and time. The
model performance is compared o benchmark models; Historical Average, Long
Short Term Memory (LSTM), and Transformers. The proposed model ranked second
with the fastest inference time and a very close performance to first place
(Transformers). Our model also achieves a running time that is six times faster
than transformers. Finally, we present a comparative study of our model and the
available benchmarks using metrics such as training time, inference time, MAPE,
MAE and RMSE. Spatial and temporal aspects are also analyzed for each of the
trained models.
- Abstract(参考訳): 交通特性は確率的非線形時空間依存性を示すため,交通予測は難しい課題である。
本稿では,重要な時空間的特徴を抽出するグラフ畳み込みゲート再帰ユニット(GC GRU N)ネットワークを開発する。
シアトルのループ検出データを使って 15分以上蓄積した 空間と時間で問題を再構築する
モデル性能は、履歴平均、Long Short Term Memory (LSTM)、Transformerというベンチマークモデルと比較される。
提案したモデルは,最速の推論時間と非常に近い性能(トランスフォーマー)で2位にランクインした。
私たちのモデルは、トランスフォーマーよりも6倍速い実行時間を実現しています。
最後に、トレーニング時間、推論時間、MAPE、MAE、RMSEなどの指標を用いて、モデルと利用可能なベンチマークを比較した。
トレーニングされた各モデルに対して、時間的および時間的側面も分析される。
関連論文リスト
- tsGT: Stochastic Time Series Modeling With Transformer [0.12905935507312413]
本稿では,汎用トランスアーキテクチャ上に構築された時系列モデルであるtsGTを紹介する。
tsGT は MAD と RMSE の最先端モデルより優れており、QL と CRPS のピアよりも 4 つの一般的なデータセットで優れていることを示す。
論文 参考訳(メタデータ) (2024-03-08T22:59:41Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - DuETT: Dual Event Time Transformer for Electronic Health Records [14.520791492631114]
我々はDuETTアーキテクチャを紹介した。これは、時間とイベントの両タイプにまたがるように設計されたトランスフォーマーの拡張である。
DuETTは集約された入力を使用し、スパース時系列は一定長さの正規シーケンスに変換される。
本モデルでは,MIMIC-IV と PhysioNet-2012 EHR データセットを用いて,複数の下流タスクにおける最先端のディープラーニングモデルより優れています。
論文 参考訳(メタデータ) (2023-04-25T17:47:48Z) - Laplacian Convolutional Representation for Traffic Time Series Imputation [27.525490099749383]
トラフィック時系列の局所的傾向を特徴付けるための時間正則化にラプラシアンカーネルを導入する。
循環行列核ノルムとラプラシアン核化時間正規化を併用して低ランクラプラシアン畳み込み表現(LCR)モデルを開発する。
各種時系列行動のトラヒック時系列を計算するためのベースラインモデルよりもLCRの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T04:08:56Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Network-wide Multi-step Traffic Volume Prediction using Graph
Convolutional Gated Recurrent Neural Network [16.56822335262946]
本稿では,新しいディープラーニングモデルであるGCGRNN(Graph Convolutional Gated Recurrent Neural Network)を提案する。
我々は,カリフォルニア州ロサンゼルスの150個のセンサーから抽出した2つのトラフィックデータセットを,それぞれ1時間15分で評価した。
論文 参考訳(メタデータ) (2021-11-22T16:41:13Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph
Neural Network [2.7088996845250897]
このような分解加群との複素時間的関係を抽出するのは時間的効果が低いと我々は主張する。
空間的および時間的アグリゲーションを行う交通予測のための統一S週間グラフ畳み込み(USTGCN)を提案する。
我々のモデルUSTGCNは3つの人気のあるベンチマークデータセットで最先端のパフォーマンスを上回ります。
論文 参考訳(メタデータ) (2021-04-26T12:33:17Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。