論文の概要: Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation
- arxiv url: http://arxiv.org/abs/2211.08737v1
- Date: Wed, 16 Nov 2022 07:53:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 14:28:04.578120
- Title: Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation
- Title(参考訳): 短期量子コンピューティング技術:変分量子アルゴリズム、誤り除去、回路コンパイル、ベンチマークおよび古典シミュレーション
- Authors: He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei,
Xiaoming Sun, Wan-Su Bao, Gui-Lu Long
- Abstract要約: 私たちはまだ、本格的な量子コンピュータの成熟まで長い道のりを歩んでいます。
注目すべき課題は、非自明なタスクを確実に実行可能なアプリケーションを開発することです。
誤りを特徴づけ、緩和するために、いくつかの短期量子コンピューティング技術が提案されている。
- 参考スコア(独自算出の注目度): 5.381727213688375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is a game-changing technology for global academia, research
centers and industries including computational science, mathematics, finance,
pharmaceutical, materials science, chemistry and cryptography. Although it has
seen a major boost in the last decade, we are still a long way from reaching
the maturity of a full-fledged quantum computer. That said, we will be in the
Noisy-Intermediate Scale Quantum (NISQ) era for a long time, working on dozens
or even thousands of qubits quantum computing systems. An outstanding
challenge, then, is to come up with an application that can reliably carry out
a nontrivial task of interest on the near-term quantum devices with
non-negligible quantum noise. To address this challenge, several near-term
quantum computing techniques, including variational quantum algorithms, error
mitigation, quantum circuit compilation and benchmarking protocols, have been
proposed to characterize and mitigate errors, and to implement algorithms with
a certain resistance to noise, so as to enhance the capabilities of near-term
quantum devices and explore the boundaries of their ability to realize useful
applications. Besides, the development of near-term quantum devices is
inseparable from the efficient classical simulation, which plays a vital role
in quantum algorithm design and verification, error-tolerant verification and
other applications. This review will provide a thorough introduction of these
near-term quantum computing techniques, report on their progress, and finally
discuss the future prospect of these techniques, which we hope will motivate
researchers to undertake additional studies in this field.
- Abstract(参考訳): 量子コンピューティング(Quantum Computing)は、計算科学、数学、ファイナンス、薬学、材料科学、化学、暗号などを含む、世界学術、研究センター、産業のゲーム変更技術である。
この10年で大きな成長を遂げたものの、本格的な量子コンピュータが成熟するまでには、まだまだ長い道のりが続いています。
とは言っても、我々は長い間、ノイズ・中間スケール量子(NISQ)時代にあり、数十から数千の量子コンピューティングシステムに取り組んでいる。
そこで、注目すべき課題は、非無視の量子ノイズを持つ短期量子デバイスに対して、確実に非自明なタスクを実行することができるアプリケーションを考案することである。
この課題に対処するために、変分量子アルゴリズム、エラー軽減、量子回路コンパイル、ベンチマークプロトコルなど、いくつかの短期量子コンピューティング技術が提案され、エラーを特徴づけ、緩和し、ノイズに対する一定の耐性を持つアルゴリズムを実装し、短期量子デバイスの能力を高め、有用アプリケーションを実現する能力の境界を探求している。
加えて、短期量子デバイスの開発は、量子アルゴリズムの設計と検証、エラー耐性検証、その他の応用において重要な役割を果たす効率的な古典シミュレーションとは分離できない。
このレビューでは、これらの短期量子コンピューティング技術の徹底的な導入、その進歩の報告、そして最終的にこれらの技術の将来展望について論じる。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Distributed Quantum Computing for Chemical Applications [10.679753825744964]
分散量子コンピューティング(DQC)は、計算処理を多くのデバイスに分散させることによって計算能力を高めることを目的としている。
DQCは、多くのデバイスに計算プロセスを分散させることによって計算能力を高めることを目的としており、量子デバイスに必要なノイズと回路深度を最小限にすることを目的としている。
論文 参考訳(メタデータ) (2024-08-09T21:42:51Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
本稿では,量子コンピュータハードウェアの最先端開発と量子暗号,量子ソフトウェア,高スケール性量子コンピュータの今後の進歩について論じる。
量子技術の研究と開発における多くの潜在的な課題とエキサイティングな新しいトレンドが、より広範な議論のためにこの論文で強調されている。
論文 参考訳(メタデータ) (2024-03-04T17:33:18Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
この論文は、量子計算資源の要求を減らす2つの主要な技術を開発した。
目的は、現在の量子プロセッサでアプリケーションサイズをスケールアップすることだ。
アルゴリズムの応用の主な焦点は量子システムのシミュレーションであるが、開発したサブルーチンは最適化や機械学習の分野でさらに活用することができる。
論文 参考訳(メタデータ) (2024-03-01T19:36:35Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Variational Quantum Algorithms [1.9486734911696273]
量子コンピュータは、大規模量子システムや大規模線形代数問題を解くなどの応用を解くことを約束する。
現在利用可能な量子デバイスには、量子ビット数の制限や回路深さを制限するノイズプロセスなど、深刻な制約がある。
パラメトリズド量子回路のトレーニングに古典的シミュレーションを用いる変分量子アルゴリズム(vqas)は、これらの制約に対処するための主要な戦略として登場した。
論文 参考訳(メタデータ) (2020-12-16T21:00:46Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
計算量子化学の近似をゲートベースの量子コンピュータ上で分子化学をシミュレートする手法と組み合わせる。
基本集合を増大させるために解放された量子資源を用いることで、より正確な結果が得られ、必要な数の量子コンピューティングの実行が削減されることが示される。
論文 参考訳(メタデータ) (2020-01-31T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。