SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition
- URL: http://arxiv.org/abs/2211.08760v2
- Date: Thu, 14 Mar 2024 15:16:05 GMT
- Title: SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition
- Authors: Yihang Gao, Ka Chun Cheung, Michael K. Ng,
- Abstract summary: One neural network corresponds to one partial differential equations.
In practice, we usually need to solve a class of PDEs, not just one.
We propose a transfer learning method of PINNs via keeping singular vectors and optimizing singular values.
- Score: 24.422082821785487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have attracted significant attention for solving partial differential equations (PDEs) in recent years because they alleviate the curse of dimensionality that appears in traditional methods. However, the most disadvantage of PINNs is that one neural network corresponds to one PDE. In practice, we usually need to solve a class of PDEs, not just one. With the explosive growth of deep learning, many useful techniques in general deep learning tasks are also suitable for PINNs. Transfer learning methods may reduce the cost for PINNs in solving a class of PDEs. In this paper, we proposed a transfer learning method of PINNs via keeping singular vectors and optimizing singular values (namely SVD-PINNs). Numerical experiments on high dimensional PDEs (10-d linear parabolic equations and 10-d Allen-Cahn equations) show that SVD-PINNs work for solving a class of PDEs with different but close right-hand-side functions.
Related papers
- iPINNs: Incremental learning for Physics-informed neural networks [66.4795381419701]
Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations (PDEs)
We propose incremental PINNs that can learn multiple tasks sequentially without additional parameters for new tasks and improve performance for every equation in the sequence.
Our approach learns multiple PDEs starting from the simplest one by creating its own subnetwork for each PDE and allowing each subnetwork to overlap with previously learnedworks.
arXiv Detail & Related papers (2023-04-10T20:19:20Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
We propose characteristic-informed neural networks (CINN) for solving forward and inverse problems involving hyperbolic PDEs.
CINN encodes the characteristics of the PDE in a general-purpose deep neural network trained with the usual MSE data-fitting regression loss.
Preliminary results indicate that CINN is able to improve on the accuracy of the baseline PINN, while being nearly twice as fast to train and avoiding non-physical solutions.
arXiv Detail & Related papers (2022-12-28T18:38:53Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
Physic-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations.
PINNs are nowadays used to solve PDEs, fractional equations, and integral-differential equations.
arXiv Detail & Related papers (2022-01-14T19:05:44Z) - Gradient-enhanced physics-informed neural networks for forward and
inverse PDE problems [2.0062792633909026]
Deep learning has been shown to be an effective tool in solving partial differential equations (PDEs) through physics-informed neural networks (PINNs)
PINNs embed the PDE residual into the loss function of the neural network, and have been successfully employed to solve diverse forward and inverse PDE problems.
Here, we propose a new method, gradient-enhanced physics-informed neural networks (gPINNs) for improving the accuracy and training efficiency of PINNs.
arXiv Detail & Related papers (2021-11-01T18:01:38Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.