Separable PINN: Mitigating the Curse of Dimensionality in
Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2211.08761v3
- Date: Fri, 3 Nov 2023 02:30:47 GMT
- Title: Separable PINN: Mitigating the Curse of Dimensionality in
Physics-Informed Neural Networks
- Authors: Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong,
Eunbyung Park
- Abstract summary: Physics-informed neural networks (PINNs) have emerged as new data-driven PDE solvers for both forward and inverse problems.
We demonstrate that the computations in automatic differentiation (AD) can be significantly reduced by leveraging forward-mode AD when training PINN.
We propose a network architecture, called separable PINN (SPINN), which can facilitate forward-mode AD for more efficient computation.
- Score: 6.439575695132489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have emerged as new data-driven PDE
solvers for both forward and inverse problems. While promising, the expensive
computational costs to obtain solutions often restrict their broader
applicability. We demonstrate that the computations in automatic
differentiation (AD) can be significantly reduced by leveraging forward-mode AD
when training PINN. However, a naive application of forward-mode AD to
conventional PINNs results in higher computation, losing its practical benefit.
Therefore, we propose a network architecture, called separable PINN (SPINN),
which can facilitate forward-mode AD for more efficient computation. SPINN
operates on a per-axis basis instead of point-wise processing in conventional
PINNs, decreasing the number of network forward passes. Besides, while the
computation and memory costs of standard PINNs grow exponentially along with
the grid resolution, that of our model is remarkably less susceptible,
mitigating the curse of dimensionality. We demonstrate the effectiveness of our
model in various PDE systems by significantly reducing the training run-time
while achieving comparable accuracy. Project page:
https://jwcho5576.github.io/spinn/
Related papers
- PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs)
We introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation.
PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs.
arXiv Detail & Related papers (2023-07-21T18:06:27Z) - Quantum-Inspired Tensor Neural Networks for Option Pricing [4.3942901219301564]
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions.
A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs.
This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to control for industrial applications.
arXiv Detail & Related papers (2022-12-28T19:39:55Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
We propose characteristic-informed neural networks (CINN) for solving forward and inverse problems involving hyperbolic PDEs.
CINN encodes the characteristics of the PDE in a general-purpose deep neural network trained with the usual MSE data-fitting regression loss.
Preliminary results indicate that CINN is able to improve on the accuracy of the baseline PINN, while being nearly twice as fast to train and avoiding non-physical solutions.
arXiv Detail & Related papers (2022-12-28T18:38:53Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
We introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN.
We show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network.
arXiv Detail & Related papers (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.