Qubit control using quantum Zeno effect: Action principle approach
- URL: http://arxiv.org/abs/2211.08773v1
- Date: Wed, 16 Nov 2022 09:01:13 GMT
- Title: Qubit control using quantum Zeno effect: Action principle approach
- Authors: Komal Kumari, Garima Rajpoot, Sandeep Joshi and Sudhir Ranjan Jain
- Abstract summary: We study the stages in which quantum Zeno effect helps control the states of a simple quantum system.
The detailed dynamics of a driven two-level system subjected to repeated measurements unravels a myriad of phases.
We believe that the systematic treatment presented here paves the way for a better and clearer understanding of quantum Zeno effect in the context of quantum error correction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We employ the stochastic path-integral formalism and action principle for
continuous quantum measurements - the Chantasri-Dressel-Jordan (CDJ) action
formalism [1, 2] - to understand the stages in which quantum Zeno effect helps
control the states of a simple quantum system. The detailed dynamics of a
driven two-level system subjected to repeated measurements unravels a myriad of
phases, so to say. When the detection frequency is smaller than the Rabi
frequency, the oscillations slow down, eventually coming to a halt at an
interesting resonance when measurements are spaced exactly by the time of
transition between the two states. On the other hand, in the limit of large
number of repeated measurements, the dynamics organizes itself in a rather
interesting way about two hyperbolic points in phase space whose stable and
unstable directions are reversed. Thus, the phase space flow occurs from one
hyperbolic point to another, in different ways organized around the
separatrices. We believe that the systematic treatment presented here paves the
way for a better and clearer understanding of quantum Zeno effect in the
context of quantum error correction.
Related papers
- Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Metastable quantum entrainment [0.0]
We show that quantum entrainment is here characterized by fluctuations driving an incoherent process between two metastable phases.
We discuss connections with the phenomena of dissipative phase transitions and transient synchronization in open quantum systems.
arXiv Detail & Related papers (2021-09-03T10:58:21Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Observation of measurement-induced quantum phases in a trapped-ion
quantum computer [1.327151508840301]
Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment.
We explore this balance via random quantum circuits implemented on a trapped ion quantum computer.
We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.
arXiv Detail & Related papers (2021-06-10T16:08:50Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.