Noise-robust ground state energy estimates from deep quantum circuits
- URL: http://arxiv.org/abs/2211.08780v2
- Date: Thu, 7 Sep 2023 04:42:20 GMT
- Title: Noise-robust ground state energy estimates from deep quantum circuits
- Authors: Harish J. Vallury, Michael A. Jones, Gregory A. L. White, Floyd M.
Creevey, Charles D. Hill, Lloyd C. L. Hollenberg
- Abstract summary: We show how the underlying energy estimate explicitly filters out incoherent noise in quantum algorithms.
We implement QCM for a model of quantum magnetism on IBM Quantum hardware.
We find that QCM maintains a remarkably high degree of error robustness where VQE completely fails.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the lead up to fault tolerance, the utility of quantum computing will be
determined by how adequately the effects of noise can be circumvented in
quantum algorithms. Hybrid quantum-classical algorithms such as the variational
quantum eigensolver (VQE) have been designed for the short-term regime.
However, as problems scale, VQE results are generally scrambled by noise on
present-day hardware. While error mitigation techniques alleviate these issues
to some extent, there is a pressing need to develop algorithmic approaches with
higher robustness to noise. Here, we explore the robustness properties of the
recently introduced quantum computed moments (QCM) approach to ground state
energy problems, and show through an analytic example how the underlying energy
estimate explicitly filters out incoherent noise. Motivated by this
observation, we implement QCM for a model of quantum magnetism on IBM Quantum
hardware to examine the noise-filtering effect with increasing circuit depth.
We find that QCM maintains a remarkably high degree of error robustness where
VQE completely fails. On instances of the quantum magnetism model up to 20
qubits for ultra-deep trial state circuits of up to ~500 CNOTs, QCM is still
able to extract reasonable energy estimates. The observation is bolstered by an
extensive set of experimental results. To match these results, VQE would need
hardware improvement by some 2 orders of magnitude on error rates.
Related papers
- Quantum subspace expansion in the presence of hardware noise [0.0]
Finding ground state energies on current quantum processing units (QPUs) continues to pose challenges.
Hardware noise severely affects both the expressivity and trainability of parametrized quantum circuits.
We show how to integrate VQE with a quantum subspace expansion, allowing for an optimal balance between quantum and classical computing capabilities and costs.
arXiv Detail & Related papers (2024-04-14T02:48:42Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
Variational Quantum Eigensolver (VQE) is a promising algorithm for solving complex quantum problems.
The ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes.
This research introduces a novel approach by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations.
arXiv Detail & Related papers (2024-03-10T15:35:41Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Reducing runtime and error in VQE using deeper and noisier quantum
circuits [0.0]
A core of many quantum algorithms including VQE, can be improved in terms of precision and accuracy by using a technique we call Robust Amplitude Estimation.
By using deeper, and therefore more error-prone, quantum circuits, we realize more accurate quantum computations in less time.
This technique may be used to speed up quantum computations into the regime of early fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-20T17:11:29Z) - Simulating noisy variational quantum eigensolver with local noise models [4.581041382009666]
Variational quantum eigensolver (VQE) is promising to show quantum advantage on near-term noisy-intermediate-scale quantum computers.
One central problem of VQE is the effect of noise, especially the physical noise on realistic quantum computers.
We study systematically the effect of noise for the VQE algorithm, by performing numerical simulations with various local noise models.
arXiv Detail & Related papers (2020-10-28T08:51:59Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.