論文の概要: SMILEtrack: SiMIlarity LEarning for Occlusion-Aware Multiple Object
Tracking
- arxiv url: http://arxiv.org/abs/2211.08824v4
- Date: Mon, 22 Jan 2024 06:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 22:26:12.048386
- Title: SMILEtrack: SiMIlarity LEarning for Occlusion-Aware Multiple Object
Tracking
- Title(参考訳): smiletrack: 咬合を検知する複数物体追跡のための類似性学習
- Authors: Yu-Hsiang Wang, Jun-Wei Hsieh, Ping-Yang Chen, Ming-Ching Chang, Hung
Hin So, Xin Li
- Abstract要約: 本稿では,SLM(Siamese Network-based similarity Learning Module)を用いたオブジェクトトラッカーSMILEtrackを紹介する。
SLMは2つのオブジェクト間の外観類似性を計算し、分離検出および埋め込みモデルにおける特徴記述子の制限を克服する。
第2に、連続するビデオフレーム間の堅牢なオブジェクトマッチングのための新しいGATE関数を備えた類似マッチングカスケード(SMC)モジュールを開発する。
- 参考スコア(独自算出の注目度): 20.286114226299237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent progress in Multiple Object Tracking (MOT), several obstacles
such as occlusions, similar objects, and complex scenes remain an open
challenge. Meanwhile, a systematic study of the cost-performance tradeoff for
the popular tracking-by-detection paradigm is still lacking. This paper
introduces SMILEtrack, an innovative object tracker that effectively addresses
these challenges by integrating an efficient object detector with a Siamese
network-based Similarity Learning Module (SLM). The technical contributions of
SMILETrack are twofold. First, we propose an SLM that calculates the appearance
similarity between two objects, overcoming the limitations of feature
descriptors in Separate Detection and Embedding (SDE) models. The SLM
incorporates a Patch Self-Attention (PSA) block inspired by the vision
Transformer, which generates reliable features for accurate similarity
matching. Second, we develop a Similarity Matching Cascade (SMC) module with a
novel GATE function for robust object matching across consecutive video frames,
further enhancing MOT performance. Together, these innovations help SMILETrack
achieve an improved trade-off between the cost ({\em e.g.}, running speed) and
performance (e.g., tracking accuracy) over several existing state-of-the-art
benchmarks, including the popular BYTETrack method. SMILETrack outperforms
BYTETrack by 0.4-0.8 MOTA and 2.1-2.2 HOTA points on MOT17 and MOT20 datasets.
Code is available at https://github.com/pingyang1117/SMILEtrack_Official
- Abstract(参考訳): 最近のMOT(Multiple Object Tracking)の進歩にもかかわらず、オクルージョンや類似のオブジェクト、複雑なシーンといったいくつかの障害は未解決の課題である。
一方で、一般的なトラッキングバイ検出パラダイムに対するコストパフォーマンストレードオフに関する体系的な研究は、いまだに不足している。
本稿では,SLM(Siamese Network-based similarity Learning Module)と効率的なオブジェクト検出器を統合することで,これらの課題に効果的に対応する革新的なオブジェクトトラッカーSMILEtrackを紹介する。
SMILETrackの技術的貢献は2つある。
まず,2つのオブジェクト間の外観類似性を計算し,分離検出および埋め込み(SDE)モデルにおける特徴記述子の限界を克服するSLMを提案する。
SLMは視覚変換器にインスパイアされたPatch Self-Attention (PSA)ブロックを組み込み、正確な類似性マッチングのための信頼性の高い特徴を生成する。
第2に、連続するビデオフレーム間の堅牢なオブジェクトマッチングのための新しいGATE機能を備えた類似マッチングカスケード(SMC)モジュールを開発し、MOT性能をさらに向上する。
これらの革新によってSMILETrackはコスト(例えば、実行速度)とパフォーマンス(例えば、BYTETrackメソッドを含むいくつかの既存の最先端ベンチマーク)の間のトレードオフを改善することができる。
SMILETrack は BYTETrack を 0.4-0.8 MOTA で、MOT17 と MOT20 のデータセットで 2.1-2.2 HOTA で上回っている。
コードはhttps://github.com/pingyang1117/SMILEtrack_Officialで公開されている。
関連論文リスト
- HSTrack: Bootstrap End-to-End Multi-Camera 3D Multi-object Tracking with Hybrid Supervision [34.7347336548199]
カメラベースの3Dマルチオブジェクトトラッキング(MOT)では、一般的な手法はトラッキング・バイ・クエリー・プロパゲーションのパラダイムに従っている。
本稿では,HSTrackを提案する。HSTrackは,マルチタスク学習を協調して検出・追跡する新しいプラグイン・アンド・プレイ方式である。
論文 参考訳(メタデータ) (2024-11-11T08:18:49Z) - ConsistencyTrack: A Robust Multi-Object Tracker with a Generation Strategy of Consistency Model [20.259334882471574]
マルチオブジェクトトラッキング(MOT)は、コンピュータビジョンにおいて重要な技術であり、ビデオシーケンス内の複数のターゲットを検出し、各ターゲットにフレーム毎にユニークなIDを割り当てるように設計されている。
既存のMOTメソッドは、様々なシナリオでリアルタイムで複数のオブジェクトを正確に追跡する。
本稿では,境界ボックス上の拡散過程として検出と関連を定式化するための新しいConsistencyTrack, Joint Detection and Tracking (JDT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-28T05:53:30Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple
Object Tracking [73.52284039530261]
本稿では,コントラスト学習のために,画像上に数百のオブジェクト領域を密集した擬似Dense類似性学習を提案する。
得られた特徴空間は、オブジェクトアソシエーションの推論時間において、単純な近接探索を許容する。
我々の類似性学習方式は,ビデオデータに限らず,静的入力でも有効なインスタンス類似性を学ぶことができることを示す。
論文 参考訳(メタデータ) (2022-10-12T15:47:36Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
異なるシナリオにおけるトラッキング問題に1つのパラダイムで対処するために,UTT(Unified Transformer Tracker)を提案する。
SOT(Single Object Tracking)とMOT(Multiple Object Tracking)の両方を対象とするトラックトランスフォーマーを開発した。
論文 参考訳(メタデータ) (2022-03-29T01:38:49Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
本稿では,複数の物体の運動パラメータを推定し,共同検出と関連付けを行うディープ・モーション・モデリング・ネットワーク(DMM-Net)を提案する。
DMM-Netは、人気の高いUA-DETRACチャレンジで12.80 @120+ fpsのPR-MOTAスコアを達成した。
また,車両追跡のための大規模な公開データセットOmni-MOTを合成し,精密な接地トルースアノテーションを提供する。
論文 参考訳(メタデータ) (2020-08-20T08:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。