論文の概要: QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple
Object Tracking
- arxiv url: http://arxiv.org/abs/2210.06984v2
- Date: Wed, 27 Sep 2023 12:39:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 23:05:18.575041
- Title: QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple
Object Tracking
- Title(参考訳): qdtrack: 外観のみの複数物体追跡のための擬似類似性学習
- Authors: Tobias Fischer, Thomas E. Huang, Jiangmiao Pang, Linlu Qiu, Haofeng
Chen, Trevor Darrell, Fisher Yu
- Abstract要約: 本稿では,コントラスト学習のために,画像上に数百のオブジェクト領域を密集した擬似Dense類似性学習を提案する。
得られた特徴空間は、オブジェクトアソシエーションの推論時間において、単純な近接探索を許容する。
我々の類似性学習方式は,ビデオデータに限らず,静的入力でも有効なインスタンス類似性を学ぶことができることを示す。
- 参考スコア(独自算出の注目度): 73.52284039530261
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Similarity learning has been recognized as a crucial step for object
tracking. However, existing multiple object tracking methods only use sparse
ground truth matching as the training objective, while ignoring the majority of
the informative regions in images. In this paper, we present Quasi-Dense
Similarity Learning, which densely samples hundreds of object regions on a pair
of images for contrastive learning. We combine this similarity learning with
multiple existing object detectors to build Quasi-Dense Tracking (QDTrack),
which does not require displacement regression or motion priors. We find that
the resulting distinctive feature space admits a simple nearest neighbor search
at inference time for object association. In addition, we show that our
similarity learning scheme is not limited to video data, but can learn
effective instance similarity even from static input, enabling a competitive
tracking performance without training on videos or using tracking supervision.
We conduct extensive experiments on a wide variety of popular MOT benchmarks.
We find that, despite its simplicity, QDTrack rivals the performance of
state-of-the-art tracking methods on all benchmarks and sets a new
state-of-the-art on the large-scale BDD100K MOT benchmark, while introducing
negligible computational overhead to the detector.
- Abstract(参考訳): 類似性学習は、オブジェクト追跡の重要なステップとして認識されている。
しかしながら、既存の複数のオブジェクト追跡手法では、画像内の情報領域の大部分を無視しながら、トレーニング対象としてスパースな基底真理マッチングのみを使用する。
本稿では,コントラスト学習のために,一対のイメージ上に数百のオブジェクト領域を密集した擬似Dense類似性学習を提案する。
この類似性学習と既存の複数の物体検出器を組み合わせることで、変位回帰や運動前兆を必要としない準拡散追跡(qdtrack)を構築する。
得られた特徴空間は、オブジェクトアソシエーションの推論時間において、単純な近接探索を許容する。
さらに,我々の類似性学習方式はビデオデータに限らず,静的入力からでも効果的なインスタンス類似性を学習できることを示す。
我々は、様々なMOTベンチマークで広範な実験を行う。
単純さにもかかわらず、QDTrackはすべてのベンチマークで最先端のトラッキング手法の性能に匹敵し、大規模なBDD100K MOTベンチマークに新しい最先端の手法をセットし、検出器に無視可能な計算オーバーヘッドを導入している。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
マルチオブジェクトトラッキング(MOT)タスクにおいて,JDEトラッカーは優れた性能を示した。
オブジェクトの時間的情報を取得するために,クロスコリレーションを用いた新しい学習手法を提案する。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
本研究では,多目的追跡のための双方向マッチングアルゴリズムを提案する。
ストランド領域はマッチングアルゴリズムで使われ、追跡できないオブジェクトを一時的に保存する。
MOT17チャレンジでは、提案アルゴリズムは63.4%のMOTA、55.3%のIDF1、20.1のFPS追跡速度を達成した。
論文 参考訳(メタデータ) (2023-03-15T08:38:08Z) - Unifying Tracking and Image-Video Object Detection [54.91658924277527]
TrIVD (Tracking and Image-Video Detection) は、画像OD、ビデオOD、MOTを1つのエンドツーエンドモデルに統合する最初のフレームワークである。
カテゴリラベルの相違やセマンティックな重複に対処するため、TrIVDは対象カテゴリに対する検出/追跡を基礎と理由として定式化している。
論文 参考訳(メタデータ) (2022-11-20T20:30:28Z) - Semi-TCL: Semi-Supervised Track Contrastive Representation Learning [40.31083437957288]
我々は、外観埋め込みを学習するために、新しいインスタンス・ツー・トラックマッチングの目的を設計する。
候補検出とトラッカーに永続化されたトラックの埋め込みを比較する。
我々は,この学習目標を,構成的損失の精神に倣って統一的な形で実施する。
論文 参考訳(メタデータ) (2021-07-06T05:23:30Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Learning to associate detections for real-time multiple object tracking [0.0]
本研究では, ニューラルネットワークを用いて, 検出に使用可能な類似性関数を学習する。
提案したトラッカーは最先端の手法で得られた結果と一致し、ベースラインとして使用される最近の類似手法よりも58%高速に動作している。
論文 参考訳(メタデータ) (2020-07-12T17:08:41Z) - Quasi-Dense Similarity Learning for Multiple Object Tracking [82.93471035675299]
本稿では, コントラスト学習のための画像に対して, 数百の領域提案を高密度にサンプリングする準高次類似性学習を提案する。
この類似性学習と既存の検出手法を直接組み合わせてQuasi-Dense Tracking(QDTrack)を構築することができる。
論文 参考訳(メタデータ) (2020-06-11T17:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。