Semi-Supervised and Self-Supervised Collaborative Learning for Prostate
3D MR Image Segmentation
- URL: http://arxiv.org/abs/2211.08840v1
- Date: Wed, 16 Nov 2022 11:40:13 GMT
- Title: Semi-Supervised and Self-Supervised Collaborative Learning for Prostate
3D MR Image Segmentation
- Authors: Yousuf Babiker M. Osman, Cheng Li, Weijian Huang, Nazik Elsayed,
Zhenzhen Xue, Hairong Zheng, Shanshan Wang
- Abstract summary: Volumetric magnetic resonance (MR) image segmentation plays an important role in many clinical applications.
Deep learning (DL) has recently achieved state-of-the-art or even human-level performance on various image segmentation tasks.
In this work, we aim to train a semi-supervised and self-supervised collaborative learning framework for prostate 3D MR image segmentation.
- Score: 8.527048567343234
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Volumetric magnetic resonance (MR) image segmentation plays an important role
in many clinical applications. Deep learning (DL) has recently achieved
state-of-the-art or even human-level performance on various image segmentation
tasks. Nevertheless, manually annotating volumetric MR images for DL model
training is labor-exhaustive and time-consuming. In this work, we aim to train
a semi-supervised and self-supervised collaborative learning framework for
prostate 3D MR image segmentation while using extremely sparse annotations, for
which the ground truth annotations are provided for just the central slice of
each volumetric MR image. Specifically, semi-supervised learning and
self-supervised learning methods are used to generate two independent sets of
pseudo labels. These pseudo labels are then fused by Boolean operation to
extract a more confident pseudo label set. The images with either manual or
network self-generated labels are then employed to train a segmentation model
for target volume extraction. Experimental results on a publicly available
prostate MR image dataset demonstrate that, while requiring significantly less
annotation effort, our framework generates very encouraging segmentation
results. The proposed framework is very useful in clinical applications when
training data with dense annotations are difficult to obtain.
Related papers
- OneSeg: Self-learning and One-shot Learning based Single-slice
Annotation for 3D Medical Image Segmentation [36.50258132379276]
We propose a self-learning and one-shot learning based framework for 3D medical image segmentation by annotating only one slice of each 3D image.
Our approach takes two steps: (1) self-learning of a reconstruction network to learn semantic correspondence among 2D slices within 3D images, and (2) representative selection of single slices for one-shot manual annotation.
Our new framework achieves comparable performance with less than 1% annotated data compared with fully supervised methods.
arXiv Detail & Related papers (2023-09-24T15:35:58Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Suggestive Annotation of Brain MR Images with Gradient-guided Sampling [12.928940875474378]
We propose an efficient annotation framework for brain MR images that can suggest informative sample images for human experts to annotate.
We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation.
The proposed framework demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.
arXiv Detail & Related papers (2022-06-02T12:23:44Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
We propose to adapt contrastive learning to work with meta-label annotations.
We use the meta-labels for pre-training the image encoder as well as to regularize a semi-supervised training.
Results on three different medical image segmentation datasets show that our approach highly boosts the performance of a model trained on a few scans.
arXiv Detail & Related papers (2021-07-29T04:30:46Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.