Data-pooling Reinforcement Learning for Personalized Healthcare
Intervention
- URL: http://arxiv.org/abs/2211.08998v1
- Date: Wed, 16 Nov 2022 15:52:49 GMT
- Title: Data-pooling Reinforcement Learning for Personalized Healthcare
Intervention
- Authors: Xinyun Chen, Pengyi Shi, Shanwen Pu
- Abstract summary: We develop a novel data-pooling reinforcement learning (RL) algorithm based on a general perturbed value iteration framework.
Our algorithm adaptively pools historical data, with three main innovations: (i) the weight of pooling ties directly to the performance of decision (measured by regret) as opposed to estimation accuracy in conventional methods.
We substantiate the theoretical development with empirically better performance of our algorithm via a case study in the context of post-discharge intervention to prevent unplanned readmissions.
- Score: 20.436521180168455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the emerging needs of personalized preventative intervention in
many healthcare applications, we consider a multi-stage, dynamic
decision-making problem in the online setting with unknown model parameters. To
deal with the pervasive issue of small sample size in personalized planning, we
develop a novel data-pooling reinforcement learning (RL) algorithm based on a
general perturbed value iteration framework. Our algorithm adaptively pools
historical data, with three main innovations: (i) the weight of pooling ties
directly to the performance of decision (measured by regret) as opposed to
estimation accuracy in conventional methods; (ii) no parametric assumptions are
needed between historical and current data; and (iii) requiring data-sharing
only via aggregate statistics, as opposed to patient-level data. Our
data-pooling algorithm framework applies to a variety of popular RL algorithms,
and we establish a theoretical performance guarantee showing that our pooling
version achieves a regret bound strictly smaller than that of the no-pooling
counterpart. We substantiate the theoretical development with empirically
better performance of our algorithm via a case study in the context of
post-discharge intervention to prevent unplanned readmissions, generating
practical insights for healthcare management. In particular, our algorithm
alleviates privacy concerns about sharing health data, which (i) opens the door
for individual organizations to levering public datasets or published studies
to better manage their own patients; and (ii) provides the basis for public
policy makers to encourage organizations to share aggregate data to improve
population health outcomes for the broader community.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Multi-Source Conformal Inference Under Distribution Shift [41.701790856201036]
We consider the problem of obtaining distribution-free prediction intervals for a target population, leveraging multiple potentially biased data sources.
We derive the efficient influence functions for the quantiles of unobserved outcomes in the target and source populations.
We propose a data-adaptive strategy to upweight informative data sources for efficiency gain and downweight non-informative data sources for bias reduction.
arXiv Detail & Related papers (2024-05-15T13:33:09Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes.
We study the problem of optimizing personalized interventions for patients to maximize a long-term outcome.
We present a new approach for this problem that we dub DecompPI, which decomposes the state space for a system of patients to the individual level.
arXiv Detail & Related papers (2023-03-21T21:42:03Z) - CEDAR: Communication Efficient Distributed Analysis for Regressions [9.50726756006467]
There are growing interests about distributed learning over multiple EHRs databases without sharing patient-level data.
We propose a novel communication efficient method that aggregates the local optimal estimates, by turning the problem into a missing data problem.
We provide theoretical investigation for the properties of the proposed method for statistical inference as well as differential privacy, and evaluate its performance in simulations and real data analyses.
arXiv Detail & Related papers (2022-07-01T09:53:44Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data.
Recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis.
We present a decentralized distributed method that integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy.
arXiv Detail & Related papers (2022-06-20T23:49:38Z) - Federated Offline Reinforcement Learning [55.326673977320574]
We propose a multi-site Markov decision process model that allows for both homogeneous and heterogeneous effects across sites.
We design the first federated policy optimization algorithm for offline RL with sample complexity.
We give a theoretical guarantee for the proposed algorithm, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed.
arXiv Detail & Related papers (2022-06-11T18:03:26Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.