Policy Optimization for Personalized Interventions in Behavioral Health
- URL: http://arxiv.org/abs/2303.12206v3
- Date: Thu, 18 Jul 2024 14:34:33 GMT
- Title: Policy Optimization for Personalized Interventions in Behavioral Health
- Authors: Jackie Baek, Justin J. Boutilier, Vivek F. Farias, Jonas Oddur Jonasson, Erez Yoeli,
- Abstract summary: Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes.
We study the problem of optimizing personalized interventions for patients to maximize a long-term outcome.
We present a new approach for this problem that we dub DecompPI, which decomposes the state space for a system of patients to the individual level.
- Score: 8.10897203067601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes, through education, motivation, reminders, and outreach. We study the problem of optimizing personalized interventions for patients to maximize a long-term outcome, where interventions are costly and capacity-constrained. We assume we have access to a historical dataset collected from an initial pilot study. We present a new approach for this problem that we dub DecompPI, which decomposes the state space for a system of patients to the individual level and then approximates one step of policy iteration. Implementing DecompPI simply consists of a prediction task using the dataset, alleviating the need for online experimentation. DecompPI is a generic model-free algorithm that can be used irrespective of the underlying patient behavior model. We derive theoretical guarantees on a simple, special case of the model that is representative of our problem setting. When the initial policy used to collect the data is randomized, we establish an approximation guarantee for DecompPI with respect to the improvement beyond a null policy that does not allocate interventions. We show that this guarantee is robust to estimation errors. We then conduct a rigorous empirical case study using real-world data from a mobile health platform for improving treatment adherence for tuberculosis. Using a validated simulation model, we demonstrate that DecompPI can provide the same efficacy as the status quo approach with approximately half the capacity of interventions. DecompPI is simple and easy to implement for an organization aiming to improve long-term behavior through targeted interventions, and this paper demonstrates its strong performance both theoretically and empirically, particularly in resource-limited settings.
Related papers
- Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
This paper outlines an approach in the domain of federated survival analysis, specifically the Cox Proportional Hazards (CoxPH) model.
We present an FL approach that employs feature-based clustering to enhance model accuracy across synthetic datasets and real-world applications.
arXiv Detail & Related papers (2024-07-20T18:34:20Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Causal Inference under Data Restrictions [0.0]
This dissertation focuses on modern causal inference under uncertainty and data restrictions.
It includes applications to neoadjuvant clinical trials, distributed data networks, and robust individualized decision making.
arXiv Detail & Related papers (2023-01-20T20:14:32Z) - Data-pooling Reinforcement Learning for Personalized Healthcare
Intervention [20.436521180168455]
We develop a novel data-pooling reinforcement learning (RL) algorithm based on a general perturbed value iteration framework.
Our algorithm adaptively pools historical data, with three main innovations: (i) the weight of pooling ties directly to the performance of decision (measured by regret) as opposed to estimation accuracy in conventional methods.
We substantiate the theoretical development with empirically better performance of our algorithm via a case study in the context of post-discharge intervention to prevent unplanned readmissions.
arXiv Detail & Related papers (2022-11-16T15:52:49Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.