On the complexity of implementing Trotter steps
- URL: http://arxiv.org/abs/2211.09133v3
- Date: Thu, 11 May 2023 19:09:09 GMT
- Title: On the complexity of implementing Trotter steps
- Authors: Guang Hao Low, Yuan Su, Yu Tong, Minh C. Tran
- Abstract summary: We develop methods to perform faster Trotter steps with complexity sublinear in number of terms.
We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank.
Our result suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter synthesis steps with lower gate complexity.
- Score: 2.1369834525800138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum dynamics can be simulated on a quantum computer by exponentiating
elementary terms from the Hamiltonian in a sequential manner. However, such an
implementation of Trotter steps has gate complexity depending on the total
Hamiltonian term number, comparing unfavorably to algorithms using more
advanced techniques. We develop methods to perform faster Trotter steps with
complexity sublinear in the number of terms. We achieve this for a class of
Hamiltonians whose interaction strength decays with distance according to power
law. Our methods include one based on a recursive block encoding and one based
on an average-cost simulation, overcoming the normalization-factor barrier of
these advanced quantum simulation techniques. We also realize faster Trotter
steps when certain blocks of Hamiltonian coefficients have low rank. Combining
with a tighter error analysis, we show that it suffices to use
$\left(\eta^{1/3}n^{1/3}+\frac{n^{2/3}}{\eta^{2/3}}\right)n^{1+o(1)}$ gates to
simulate uniform electron gas with $n$ spin orbitals and $\eta$ electrons in
second quantization in real space, asymptotically improving over the best
previous work. We obtain an analogous result when the external potential of
nuclei is introduced under the Born-Oppenheimer approximation. We prove a
circuit lower bound when the Hamiltonian coefficients take a continuum range of
values, showing that generic $n$-qubit $2$-local Hamiltonians with commuting
terms require at least $\Omega(n^2)$ gates to evolve with accuracy
$\epsilon=\Omega(1/poly(n))$ for time $t=\Omega(\epsilon)$. Our proof is based
on a gate-efficient reduction from the approximate synthesis of diagonal
unitaries within the Hamming weight-$2$ subspace, which may be of independent
interest. Our result thus suggests the use of Hamiltonian structural properties
as both necessary and sufficient to implement Trotter steps with lower gate
complexity.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Efficient Quantum Simulation Algorithms in the Path Integral Formulation [0.5729426778193399]
We provide two novel quantum algorithms based on Hamiltonian versions of the path integral formulation and another for Lagrangians of the form $fracm2dotx2 - V(x)$.
We show that our Lagrangian simulation algorithm requires a number of queries to an oracle that computes the discrete Lagrangian that scales for a system with $eta$ particles in $D+1$ dimensions, in the continuum limit, as $widetildeO(eta D t2/epsilon)$ if $V(x)$ is bounded
arXiv Detail & Related papers (2024-05-11T15:48:04Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
We show that a na"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $Lambda$.
We also give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates.
arXiv Detail & Related papers (2023-06-19T23:20:30Z) - Unbiased random circuit compiler for time-dependent Hamiltonian
simulation [8.694056486825318]
Time-dependent Hamiltonian simulation is a critical task in quantum computing.
We develop an unbiased random compiler for TDHS.
We perform numerical simulations for a spin model under the interaction picture and the adiabatic ground state preparation for molecular systems.
arXiv Detail & Related papers (2022-12-19T13:40:05Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Parallel Quantum Algorithm for Hamiltonian Simulation [9.680246554758343]
A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians.
The running time of our parallel quantum simulation algorithm measured by the quantum circuit depth has a doubly (poly-)logarithmic dependence.
We show that the total gate depth of our algorithm has a $operatornamepolyloglog (1/epsilon)$ dependence in the parallel setting.
arXiv Detail & Related papers (2021-05-25T12:46:33Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Exponentially faster implementations of Select(H) for fermionic
Hamiltonians [0.0]
We present a framework for constructing quantum circuits that implement the multiply-controlled unitary $textSelect(H) equiv sum_ell.
$textSelect(H)$ is one of the main subroutines of several quantum algorithms.
arXiv Detail & Related papers (2020-04-08T18:00:04Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.