Efficient Quantum Simulation Algorithms in the Path Integral Formulation
- URL: http://arxiv.org/abs/2405.07042v4
- Date: Fri, 11 Oct 2024 19:05:43 GMT
- Title: Efficient Quantum Simulation Algorithms in the Path Integral Formulation
- Authors: Serene Shum, Nathan Wiebe,
- Abstract summary: We provide two novel quantum algorithms based on Hamiltonian versions of the path integral formulation and another for Lagrangians of the form $fracm2dotx2 - V(x)$.
We show that our Lagrangian simulation algorithm requires a number of queries to an oracle that computes the discrete Lagrangian that scales for a system with $eta$ particles in $D+1$ dimensions, in the continuum limit, as $widetildeO(eta D t2/epsilon)$ if $V(x)$ is bounded
- Score: 0.5729426778193399
- License:
- Abstract: We provide a new paradigm for quantum simulation that is based on path integration that allows quantum speedups to be observed for problems that are more naturally expressed using the path integral formalism rather than the conventional sparse Hamiltonian formalism. We provide two novel quantum algorithms based on Hamiltonian versions of the path integral formulation and another for Lagrangians of the form $\frac{m}{2}\dot{x}^2 - V(x)$. This Lagrangian path integral algorithm is based on a new rigorous derivation of a discrete version of the Lagrangian path integral. Our first Hamiltonian path integral method breaks up the paths into short timesteps. It is efficient under appropriate sparsity assumptions and requires a number of queries to oracles that give the eigenvalues and overlaps between the eigenvectors of the Hamiltonian terms that scales as $t^{o(1)}/\epsilon^{o(1)}$ for simulation time $t$ and error $\epsilon$. The second approach uses long-time path integrals for near-adiabatic systems and has query complexity that scales as $O(1/\sqrt{\epsilon})$ if the energy eigenvalue gaps and simulation time is sufficiently long. Finally, we show that our Lagrangian simulation algorithm requires a number of queries to an oracle that computes the discrete Lagrangian that scales for a system with $\eta$ particles in $D+1$ dimensions, in the continuum limit, as $\widetilde{O}(\eta D t^2/\epsilon)$ if $V(x)$ is bounded and finite and the wave function obeys appropriate position and momentum cutoffs. This shows that Lagrangian dynamics can be efficiently simulated on quantum computers and opens up the possibility for quantum field theories for which the Hamiltonian is unknown to be efficiently simulated on quantum computers.
Related papers
- Schrödingerization based Quantum Circuits for Maxwell's Equation with time-dependent source terms [24.890270804373824]
This paper explicitly constructs a quantum circuit for Maxwell's equations with perfect electric conductor (PEC) boundary conditions.
We show that quantum algorithms constructed using Schr"odingerisation exhibit acceleration in computational complexity compared to the classical Finite Difference Time Domain (FDTD) format.
arXiv Detail & Related papers (2024-11-17T08:15:37Z) - Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Optimized Quantum Simulation Algorithms for Scalar Quantum Field Theories [0.3394351835510634]
We provide practical simulation methods for scalar field theories on a quantum computer that yield improveds.
We implement our approach using a series of different fault-tolerant simulation algorithms for Hamiltonians.
We find in both cases that the bounds suggest physically meaningful simulations can be performed using on the order of $4times 106$ physical qubits and $1012$ $T$-gates.
arXiv Detail & Related papers (2024-07-18T18:00:01Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
We show that a na"ive partitioning and low-order splitting formula can yield, through our divide and conquer formalism, superior scaling to qubitization for large $Lambda$.
We also give new algorithmic and circuit level techniques for gate optimization including a new way of implementing a group of multi-controlled-X gates.
arXiv Detail & Related papers (2023-06-19T23:20:30Z) - On the complexity of implementing Trotter steps [2.1369834525800138]
We develop methods to perform faster Trotter steps with complexity sublinear in number of terms.
We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank.
Our result suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter synthesis steps with lower gate complexity.
arXiv Detail & Related papers (2022-11-16T19:00:01Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Parallel Quantum Algorithm for Hamiltonian Simulation [9.680246554758343]
A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians.
The running time of our parallel quantum simulation algorithm measured by the quantum circuit depth has a doubly (poly-)logarithmic dependence.
We show that the total gate depth of our algorithm has a $operatornamepolyloglog (1/epsilon)$ dependence in the parallel setting.
arXiv Detail & Related papers (2021-05-25T12:46:33Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.