論文の概要: Deep Emotion Recognition in Textual Conversations: A Survey
- arxiv url: http://arxiv.org/abs/2211.09172v3
- Date: Wed, 22 May 2024 08:14:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 21:51:50.620198
- Title: Deep Emotion Recognition in Textual Conversations: A Survey
- Title(参考訳): テキスト会話における深部感情認識 : 調査
- Authors: Patrícia Pereira, Helena Moniz, Joao Paulo Carvalho,
- Abstract要約: 新しいアプリケーションと実装シナリオは、新しい課題と機会を示します。
これらは会話の文脈、話者と感情のダイナミクスのモデリング、一般的な感覚表現の解釈など多岐にわたる。
この調査は、アンバランスなデータに対処するテクニックを活用する利点を強調している。
- 参考スコア(独自算出の注目度): 0.8602553195689513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Emotion Recognition in Conversations (ERC) has seen a tremendous advancement in the last few years, new applications and implementation scenarios present novel challenges and opportunities. These range from leveraging the conversational context, speaker and emotion dynamics modelling, to interpreting common sense expressions, informal language and sarcasm, addressing challenges of real time ERC, recognizing emotion causes, different taxonomies across datasets, multilingual ERC to interpretability. This survey starts by introducing ERC, elaborating on the challenges and opportunities pertaining to this task. It proceeds with a description of the emotion taxonomies and a variety of ERC benchmark datasets employing such taxonomies. This is followed by descriptions of the most prominent works in ERC with explanations of the Deep Learning architectures employed. Then, it provides advisable ERC practices towards better frameworks, elaborating on methods to deal with subjectivity in annotations and modelling and methods to deal with the typically unbalanced ERC datasets. Finally, it presents systematic review tables comparing several works regarding the methods used and their performance. The survey highlights the advantage of leveraging techniques to address unbalanced data, the exploration of mixed emotions and the benefits of incorporating annotation subjectivity in the learning phase.
- Abstract(参考訳): 会話における感情認識(ERC:Emotion Recognition in Conversations)はここ数年で飛躍的な進歩を遂げている。
これらは会話の文脈、話者と感情のダイナミクスのモデリング、一般的な感覚表現、非公式言語、皮肉の解釈、リアルタイムERCの課題への対処、感情の原因の認識、データセット間の異なる分類、多言語ERCの解釈可能性など多岐にわたる。
この調査はERCの導入から始まり、このタスクに関連する課題と機会について検討する。
感情分類学と、そのような分類学を用いた様々なERCベンチマークデータセットを記述する。
この後、ERCでもっとも顕著な作品の説明とディープラーニングアーキテクチャの解説が続く。
次に、より優れたフレームワークに対して推奨されるERCのプラクティスを提供し、アノテーションやモデリングの主観性を扱うメソッドと、典型的にバランスの取れないERCデータセットを扱うメソッドを実験する。
最後に、使用するメソッドとそのパフォーマンスに関するいくつかの作業を比較した、体系的なレビューテーブルを示す。
この調査は、不均衡なデータに対処するためのテクニックを活用することの利点、混合感情の探索、学習フェーズにアノテーションの主観性を取り入れることの利点を強調している。
関連論文リスト
- BiosERC: Integrating Biography Speakers Supported by LLMs for ERC Tasks [2.9873893715462176]
本研究は,会話における話者特性を調査するBiosERCという新しいフレームワークを紹介する。
本研究では,Large Language Models (LLMs) を用いて,会話中の話者の「生体情報」を抽出する。
提案手法は,3つの有名なベンチマークデータセットを用いて,最先端のSOTA(State-of-the-art)結果を得た。
論文 参考訳(メタデータ) (2024-07-05T06:25:34Z) - CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization [7.234196390284036]
本稿では、英語対話におけるトランスフォーマーに基づく抽象要約に関する研究を要約する。
ダイアログ要約における主な課題(言語、構造、理解、話者、サリエンス、事実)をカバーします。
言語などいくつかの課題がかなりの進歩を遂げているのに対して、理解、事実性、サリエンスといった課題は依然として困難であり、重要な研究機会を持っている。
論文 参考訳(メタデータ) (2024-06-11T17:30:22Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
単段階の感情認識手法として,DSCT(Decoupled Subject-Context Transformer)を用いる。
広範に使われている文脈認識型感情認識データセットであるCAER-SとEMOTICの単段階フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-26T07:30:32Z) - Narrative Action Evaluation with Prompt-Guided Multimodal Interaction [60.281405999483]
ナラティブ・アクション・アセスメント(NAE)は、行動の実行を評価する専門家のコメントを作成することを目的としている。
NAEは、物語の柔軟性と評価の厳格さの両方を必要とするため、より困難なタスクです。
本稿では,様々な情報モダリティ間のインタラクションを容易にするための,プロンプト誘導型マルチモーダルインタラクションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-22T17:55:07Z) - Context-Aware Siamese Networks for Efficient Emotion Recognition in Conversation [1.1095648823126325]
本稿では,メトリクス学習訓練戦略に組み込む会話コンテキストをモデル化する手法を提案する。
対話における感情分類のためのマクロF1スコアの57.71を,Siamese Networkアーキテクチャによるメトリック学習を用いて獲得する。
論文 参考訳(メタデータ) (2024-04-17T07:36:40Z) - Thread of Thought Unraveling Chaotic Contexts [133.24935874034782]
思考のスレッド(ThoT)戦略は、人間の認知プロセスからインスピレーションを得ている。
実験では、他のプロンプト技術と比較して、ThoTは推論性能を著しく改善する。
論文 参考訳(メタデータ) (2023-11-15T06:54:44Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - 'What are you referring to?' Evaluating the Ability of Multi-Modal
Dialogue Models to Process Clarificational Exchanges [65.03196674816772]
参照表現が宛先に対して意図された参照を一意に識別しない場合、参照の曖昧さが対話で生じる。
出席者は、通常、そのような曖昧さをすぐに検知し、メタコミュニケーション、明確化取引所(CE: Meta-communicative, Clarification Exchanges)を使用して、話者と作業する。
ここでは、CRを生成・応答する能力は、マルチモーダルな視覚的基盤を持つ対話モデルのアーキテクチャと目的関数に特定の制約を課していると論じる。
論文 参考訳(メタデータ) (2023-07-28T13:44:33Z) - Contextual Information and Commonsense Based Prompt for Emotion
Recognition in Conversation [14.651642872901496]
会話における感情認識(Emotion Recognition in conversation,ERC)は、ある会話における発話ごとの感情を検出することを目的としている。
近年のERCモデルは、事前学習と微調整のパラダイムを取り入れた事前学習言語モデル(PLM)を活用して、優れた性能を実現している。
本稿では,命令モデルと言語モデル(LM)チューニングの新しいパラダイムを取り入れた新しいERCモデルCISPERを提案する。
論文 参考訳(メタデータ) (2022-07-27T02:34:05Z) - Hybrid Curriculum Learning for Emotion Recognition in Conversation [10.912215835115063]
本枠組みは,(1)会話レベルカリキュラム(CC)と(2)発話レベルカリキュラム(UC)の2つのカリキュラムから構成される。
提案したモデルに依存しないハイブリッドカリキュラム学習戦略により,既存のERCモデルに対する大幅な性能向上が観測された。
論文 参考訳(メタデータ) (2021-12-22T08:02:58Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
我々は,過去20年間の情緒的イメージコンテンツ分析(AICA)の発展を包括的にレビューする。
我々は、感情的ギャップ、知覚主観性、ラベルノイズと欠如という3つの主要な課題に関して、最先端の手法に焦点を当てる。
画像の内容やコンテキスト理解,グループ感情クラスタリング,ビューアーとイメージのインタラクションなど,今後の課題や研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-06-30T15:20:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。