論文の概要: The Surprising Effectiveness of Equivariant Models in Domains with
Latent Symmetry
- arxiv url: http://arxiv.org/abs/2211.09231v1
- Date: Wed, 16 Nov 2022 21:51:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 17:22:37.442851
- Title: The Surprising Effectiveness of Equivariant Models in Domains with
Latent Symmetry
- Title(参考訳): 潜在対称性を有する領域における同変モデルの驚くべき有効性
- Authors: Dian Wang, Jung Yeon Park, Neel Sortur, Lawson L.S. Wong, Robin
Walters, Robert Platt
- Abstract要約: 領域対称性と正確に一致しない対称性制約を課すことは、環境における真の対称性を学ぶのに非常に有用であることを示す。
ロボット操作・制御問題における教師付き学習と強化学習の両方において,同変モデルが潜在対称性を持つ領域における非同変手法を大幅に上回ることを示す。
- 参考スコア(独自算出の注目度): 6.716931832076628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extensive work has demonstrated that equivariant neural networks can
significantly improve sample efficiency and generalization by enforcing an
inductive bias in the network architecture. These applications typically assume
that the domain symmetry is fully described by explicit transformations of the
model inputs and outputs. However, many real-life applications contain only
latent or partial symmetries which cannot be easily described by simple
transformations of the input. In these cases, it is necessary to learn symmetry
in the environment instead of imposing it mathematically on the network
architecture. We discover, surprisingly, that imposing equivariance constraints
that do not exactly match the domain symmetry is very helpful in learning the
true symmetry in the environment. We differentiate between extrinsic and
incorrect symmetry constraints and show that while imposing incorrect symmetry
can impede the model's performance, imposing extrinsic symmetry can actually
improve performance. We demonstrate that an equivariant model can significantly
outperform non-equivariant methods on domains with latent symmetries both in
supervised learning and in reinforcement learning for robotic manipulation and
control problems.
- Abstract(参考訳): 広範にわたる研究により、同変ニューラルネットワークは、ネットワークアーキテクチャに帰納的バイアスを課すことでサンプル効率と一般化を大幅に改善できることが示されている。
これらの応用は通常、ドメイン対称性がモデル入力と出力の明示的な変換によって完全に記述されると仮定する。
しかし、実際の応用の多くは、入力の単純な変換では容易に説明できない潜在対称性や部分対称性しか含まない。
このような場合、ネットワークアーキテクチャに数学的に適用するのではなく、環境の対称性を学ぶ必要がある。
意外なことに、領域対称性と正確に一致しない同値制約を課すことは、環境の真の対称性を学ぶのに非常に役立ちます。
外部対称性と不正確な対称性の制約を区別し、不正確な対称性を課すことはモデルの性能を損なうが、外部対称性を課すことは実際に性能を向上させることができることを示した。
ロボット操作・制御問題における教師付き学習と強化学習の両方において,同変モデルが潜在対称性を持つ領域における非同変手法を大幅に上回ることを示す。
関連論文リスト
- Approximate Equivariance in Reinforcement Learning [35.04248486334824]
等変ニューラルネットワークは強化学習において大きな成功を収めている。
多くの問題において、近似対称性のみが存在しており、これは正確な対称性を不適切なものにしている。
我々は、強化学習におけるほぼ同変のアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-06T19:44:46Z) - Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
1-パラメータ群で定義された変換に基づく新しい対称性学習アルゴリズムを提案する。
この手法は最小限の帰納バイアスに基づいて構築され、リー群に根付いた一般的な対称性だけでなく、非線形発生器由来の対称性にまで拡張される。
論文 参考訳(メタデータ) (2024-10-29T08:28:23Z) - Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
我々は「緩和された同注入」という新しい概念を導入する。
我々は、この緩和を同変多層パーセプトロン(E-MLP)に組み込む方法を示す。
対称性の破れの関連性は、様々な応用領域で議論される。
論文 参考訳(メタデータ) (2023-12-14T15:06:48Z) - Learning Layer-wise Equivariances Automatically using Gradients [66.81218780702125]
畳み込みは等価対称性をニューラルネットワークにエンコードし、より優れた一般化性能をもたらす。
対称性は、ネットワークが表現できる機能、事前に指定する必要、適応できない機能に対して、固定されたハード制約を提供する。
私たちのゴールは、勾配を使ってデータから自動的に学習できるフレキシブル対称性の制約を可能にすることです。
論文 参考訳(メタデータ) (2023-10-09T20:22:43Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
入力空間(例えば画像)を符号化する学習対称埋め込みネットワーク(SEN)を提案する。
このネットワークは、同変のタスクネットワークでエンドツーエンドにトレーニングして、明示的に対称な表現を学ぶことができる。
実験により、SENは複素対称性表現を持つデータへの同変ネットワークの適用を促進することを示した。
論文 参考訳(メタデータ) (2022-04-24T22:31:52Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
我々のモデルは、シミュレーションされた乱流領域と実世界のマルチストリームジェット流の両方において、対称性バイアスのないベースラインと過度に厳密な対称性を持つベースラインの両方より優れていることが判明した。
論文 参考訳(メタデータ) (2022-01-28T07:31:28Z) - Learning Invariances in Neural Networks [51.20867785006147]
ネットワークパラメータや拡張パラメータに関して,拡張性よりも分布をパラメータ化し,トレーニング損失を同時に最適化する方法を示す。
画像分類,回帰,セグメンテーション,分子特性予測における不均一性の正確なセットと範囲を,拡張の広い空間から復元することができる。
論文 参考訳(メタデータ) (2020-10-22T17:18:48Z) - Inverse Learning of Symmetries [71.62109774068064]
2つの潜在部分空間からなるモデルで対称性変換を学ぶ。
我々のアプローチは、情報ボトルネックと連続的な相互情報正規化器の組み合わせに基づいています。
我々のモデルは, 人工的および分子的データセットにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-02-07T13:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。