論文の概要: Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
Medicine
- arxiv url: http://arxiv.org/abs/2211.09317v1
- Date: Thu, 17 Nov 2022 03:32:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 15:54:15.173705
- Title: Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
Medicine
- Title(参考訳): 医学における説明可能・ドメイン適応・連合型人工知能
- Authors: Ahmad Chaddad, Qizong lu, Jiali Li, Yousef Katib, Reem Kateb, Camel
Tanougast, Ahmed Bouridane, Ahmed Abdulkadir
- Abstract要約: 我々は、AIによる医療意思決定における特定の課題に対処する3つの主要な方法論的アプローチに焦点を当てる。
ドメイン適応と転送学習により、AIモデルをトレーニングし、複数のドメインにわたって適用することができる。
フェデレーテッド・ラーニングは、機密性の高い個人情報を漏らさずに大規模なモデルを学習することを可能にする。
- 参考スコア(独自算出の注目度): 5.126042819606137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) continues to transform data analysis in many
domains. Progress in each domain is driven by a growing body of annotated data,
increased computational resources, and technological innovations. In medicine,
the sensitivity of the data, the complexity of the tasks, the potentially high
stakes, and a requirement of accountability give rise to a particular set of
challenges. In this review, we focus on three key methodological approaches
that address some of the particular challenges in AI-driven medical decision
making. (1) Explainable AI aims to produce a human-interpretable justification
for each output. Such models increase confidence if the results appear
plausible and match the clinicians expectations. However, the absence of a
plausible explanation does not imply an inaccurate model. Especially in highly
non-linear, complex models that are tuned to maximize accuracy, such
interpretable representations only reflect a small portion of the
justification. (2) Domain adaptation and transfer learning enable AI models to
be trained and applied across multiple domains. For example, a classification
task based on images acquired on different acquisition hardware. (3) Federated
learning enables learning large-scale models without exposing sensitive
personal health information. Unlike centralized AI learning, where the
centralized learning machine has access to the entire training data, the
federated learning process iteratively updates models across multiple sites by
exchanging only parameter updates, not personal health data. This narrative
review covers the basic concepts, highlights relevant corner-stone and
state-of-the-art research in the field, and discusses perspectives.
- Abstract(参考訳): 人工知能(AI)は多くの領域でデータ分析を変換し続けている。
各ドメインの進歩は、アノテートされたデータの増加、計算リソースの増加、技術革新によって駆動される。
医学では、データの感度、タスクの複雑さ、潜在的に高い利害関係、そして説明責任の要件は、特定の課題を生じさせる。
本稿では、AIによる医療意思決定における課題に対処する3つの主要な方法論的アプローチに焦点を当てる。
1)説明可能なAIは,各出力に対して人間解釈可能な正当性を作り出すことを目的としている。
このようなモデルは、結果が妥当で、臨床医の期待に合致すると信頼性が高まる。
しかし、妥当な説明がないことは、不正確なモデルを意味するものではない。
特に、精度を最大化するために調整された非常に非線形で複雑なモデルでは、解釈可能な表現は正当化のごく一部しか反映しない。
2) ドメイン適応と伝達学習により、AIモデルを複数のドメインにまたがってトレーニングおよび適用することが可能となる。
例えば、異なる取得ハードウェアで取得した画像に基づく分類タスク。
3)フェデレートラーニングにより,個人情報を侵害することなく大規模モデルの学習が可能となる。
集中学習マシンがトレーニングデータ全体にアクセスする集中型AI学習とは異なり、フェデレーション学習プロセスは、個人の健康データではなくパラメータ更新のみを交換することによって、複数のサイトにわたるモデルを反復的に更新する。
この物語レビューは、基本的な概念をカバーし、この分野における関連する基礎研究と最先端の研究を強調し、視点について論じる。
関連論文リスト
- Towards a perturbation-based explanation for medical AI as differentiable programs [0.0]
医学や医療では、AIモデルが生み出す結果の十分かつ客観的な説明可能性に対して、特に要求がある。
本研究では,入力に加わった小さな摂動に対するモデル応答を安定に測定する,ディープラーニングモデルのヤコビ行列の数値的可用性について検討する。
これは摂動に基づく説明への第一歩であり、臨床応用におけるAIモデルの反応を理解し解釈する医療実践者を支援する。
論文 参考訳(メタデータ) (2025-02-19T07:56:23Z) - The Return of Pseudosciences in Artificial Intelligence: Have Machine Learning and Deep Learning Forgotten Lessons from Statistics and History? [0.304585143845864]
これらのML手法のデザイナと最終ユーザは,統計学の基本的な教訓を忘れてしまった,と我々は主張する。
トレーニングデータのバイアスを減らすだけで、AIモデルをより倫理的にするための現在の取り組みは不十分である、と私たちは主張する。
論文 参考訳(メタデータ) (2024-11-27T08:23:23Z) - Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-previewは目覚ましい能力を示し、しばしば人間レベルまたは優れたパフォーマンスを実現した。
このモデルは、様々な分野にわたる複雑な推論と知識の統合を必要とするタスクに優れていた。
総合的な結果は、人工知能への大きな進歩を示している。
論文 参考訳(メタデータ) (2024-09-27T06:57:00Z) - Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AIはすぐに、病気の診断、予後、治療計画、治療後の監視のための臨床実践のルーチンになるかもしれない。
患者のデータを取り巻くプライバシー上の懸念は、医療画像にAIが広く採用される上で大きな障壁となる。
Federated Learning(FL)は、機密データを共有することなく、AIモデルを協調的にトレーニングするためのソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-24T16:55:32Z) - FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of
Explainable AI Methods [15.073405675079558]
XAIは本質的に、根底的な説明を欠いているため、その自動評価は未解決の問題である。
本稿では,FunnyBirdsという新しい合成視覚データセットを提案する。
我々のツールを用いて、24種類のニューラルモデルとXAI手法の組み合わせの結果を報告する。
論文 参考訳(メタデータ) (2023-08-11T17:29:02Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Algebraic Learning: Towards Interpretable Information Modeling [0.0]
この論文は、一般的な情報モデリングにおける解釈可能性の問題に対処し、問題を2つの範囲から緩和する試みである。
まず、問題指向の視点を用いて、興味深い数学的性質が自然に現れるモデリング実践に知識を取り入れる。
第二に、訓練されたモデルを考えると、基礎となるシステムに関するさらなる洞察を抽出するために様々な方法を適用することができる。
論文 参考訳(メタデータ) (2022-03-13T15:53:39Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
我々は、診断とBCI(Brain-Computer-Interface)に関する2つの伝達学習課題を設計する。
第1タスクは、患者全体にわたる自動睡眠ステージアノテーションに対処する医療診断に重点を置いている。
タスク2はBrain-Computer Interface (BCI)に集中しており、被験者とデータセットの両方にわたる運動画像のデコードに対処する。
論文 参考訳(メタデータ) (2022-02-14T12:12:20Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。