論文の概要: The Return of Pseudosciences in Artificial Intelligence: Have Machine Learning and Deep Learning Forgotten Lessons from Statistics and History?
- arxiv url: http://arxiv.org/abs/2411.18656v1
- Date: Wed, 27 Nov 2024 08:23:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:23:18.085286
- Title: The Return of Pseudosciences in Artificial Intelligence: Have Machine Learning and Deep Learning Forgotten Lessons from Statistics and History?
- Title(参考訳): 人工知能における擬科学の復活: 機械学習と深層学習は統計学と歴史から学ぶのか?
- Authors: Jérémie Sublime,
- Abstract要約: これらのML手法のデザイナと最終ユーザは,統計学の基本的な教訓を忘れてしまった,と我々は主張する。
トレーニングデータのバイアスを減らすだけで、AIモデルをより倫理的にするための現在の取り組みは不十分である、と私たちは主張する。
- 参考スコア(独自算出の注目度): 0.304585143845864
- License:
- Abstract: In today's world, AI programs powered by Machine Learning are ubiquitous, and have achieved seemingly exceptional performance across a broad range of tasks, from medical diagnosis and credit rating in banking, to theft detection via video analysis, and even predicting political or sexual orientation from facial images. These predominantly deep learning methods excel due to their extraordinary capacity to process vast amounts of complex data to extract complex correlations and relationship from different levels of features. In this paper, we contend that the designers and final users of these ML methods have forgotten a fundamental lesson from statistics: correlation does not imply causation. Not only do most state-of-the-art methods neglect this crucial principle, but by doing so they often produce nonsensical or flawed causal models, akin to social astrology or physiognomy. Consequently, we argue that current efforts to make AI models more ethical by merely reducing biases in the training data are insufficient. Through examples, we will demonstrate that the potential for harm posed by these methods can only be mitigated by a complete rethinking of their core models, improved quality assessment metrics and policies, and by maintaining humans oversight throughout the process.
- Abstract(参考訳): 今日の世界では、機械学習を利用したAIプログラムはユビキタスであり、銀行での診断や信用格付け、ビデオ分析による盗難検出、さらには顔画像からの政治的または性的指向の予測など、幅広いタスクにおいて、非常に例外的なパフォーマンスを達成した。
これらの深層学習手法は、膨大な量の複雑なデータを処理し、異なるレベルの特徴から複雑な相関関係と関係を抽出する特別な能力によって優れている。
本稿では,これらのML手法の設計者と最終利用者が,統計学の基本的な教訓を忘れてしまったことを主張する。
ほとんどの最先端の手法は、この決定的な原則を無視するだけでなく、社会的占星術や生理学に類似した非感覚的または欠陥のある因果モデルをしばしば生み出す。
その結果、トレーニングデータのバイアスを減らすだけでAIモデルをより倫理的にするための現在の取り組みは不十分である、と論じる。
例として、これらの手法によって引き起こされる害の可能性は、コアモデルの完全な再考、品質評価の指標とポリシーの改善、プロセス全体を通して人間の監視を維持することでのみ緩和できることを示します。
関連論文リスト
- RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Webスケールコーパスでトレーニングされた大規模な言語モデルは、望ましくないデータポイントを記憶することができる。
訓練されたモデルからこれらのデータポイントを「消去」することを目的とした、多くの機械学習手法が提案されている。
以下に示す次元に基づいて,機械学習のためのRESTORフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T20:54:35Z) - Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting [4.220336689294245]
近年の研究では、トレーニングされたモデルを忘れるべきデータを学習させるために、さまざまな機械学習アルゴリズムが提案されている。
本稿では,相関崩壊を防止しつつ,効率よくインスタンスを忘れる新しい手法であるDLFDを提案する。
提案手法はデータサンプルを合成し,生成したデータ分布が特徴空間で忘れられているサンプルの分布から遠ざかるようにする。
論文 参考訳(メタデータ) (2024-09-23T06:51:10Z) - Advancing Brain Imaging Analysis Step-by-step via Progressive Self-paced Learning [0.5840945370755134]
適応型・進行型ペーシング・蒸留機構を応用したPSPD(Progressive Self-Paced Distillation)フレームワークを提案する。
我々は、アルツハイマー病神経画像イニシアチブ(ADNI)データセットを用いて、様々な畳み込みニューラルネットワークにおけるPSPDの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2024-07-23T02:26:04Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
論文 参考訳(メタデータ) (2023-07-12T01:11:52Z) - Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
Medicine [5.126042819606137]
我々は、AIによる医療意思決定における特定の課題に対処する3つの主要な方法論的アプローチに焦点を当てる。
ドメイン適応と転送学習により、AIモデルをトレーニングし、複数のドメインにわたって適用することができる。
フェデレーテッド・ラーニングは、機密性の高い個人情報を漏らさずに大規模なモデルを学習することを可能にする。
論文 参考訳(メタデータ) (2022-11-17T03:32:00Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
少数の専門家データからの模倣学習は、複雑な力学を持つ高次元環境では困難である。
行動クローニングは、実装の単純さと安定した収束性のために広く使われている単純な方法である。
本稿では,1つのQ-関数を学習することで,対向学習を回避する動的適応型ILを提案する。
論文 参考訳(メタデータ) (2021-06-23T03:43:10Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。