Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
Medicine
- URL: http://arxiv.org/abs/2211.09317v1
- Date: Thu, 17 Nov 2022 03:32:00 GMT
- Title: Explainable, Domain-Adaptive, and Federated Artificial Intelligence in
Medicine
- Authors: Ahmad Chaddad, Qizong lu, Jiali Li, Yousef Katib, Reem Kateb, Camel
Tanougast, Ahmed Bouridane, Ahmed Abdulkadir
- Abstract summary: We focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making.
Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains.
Federated learning enables learning large-scale models without exposing sensitive personal health information.
- Score: 5.126042819606137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) continues to transform data analysis in many
domains. Progress in each domain is driven by a growing body of annotated data,
increased computational resources, and technological innovations. In medicine,
the sensitivity of the data, the complexity of the tasks, the potentially high
stakes, and a requirement of accountability give rise to a particular set of
challenges. In this review, we focus on three key methodological approaches
that address some of the particular challenges in AI-driven medical decision
making. (1) Explainable AI aims to produce a human-interpretable justification
for each output. Such models increase confidence if the results appear
plausible and match the clinicians expectations. However, the absence of a
plausible explanation does not imply an inaccurate model. Especially in highly
non-linear, complex models that are tuned to maximize accuracy, such
interpretable representations only reflect a small portion of the
justification. (2) Domain adaptation and transfer learning enable AI models to
be trained and applied across multiple domains. For example, a classification
task based on images acquired on different acquisition hardware. (3) Federated
learning enables learning large-scale models without exposing sensitive
personal health information. Unlike centralized AI learning, where the
centralized learning machine has access to the entire training data, the
federated learning process iteratively updates models across multiple sites by
exchanging only parameter updates, not personal health data. This narrative
review covers the basic concepts, highlights relevant corner-stone and
state-of-the-art research in the field, and discusses perspectives.
Related papers
- Towards a perturbation-based explanation for medical AI as differentiable programs [0.0]
In medicine and healthcare, there is a particular demand for sufficient and objective explainability of the outcome generated by AI models.
This work examines a numerical availability of the Jacobian matrix of deep learning models that measures how stably a model responses against small perturbations added to the input.
This is a first step towards a perturbation-based explanation, which will assist medical practitioners in understanding and interpreting the response of the AI model in its clinical application.
arXiv Detail & Related papers (2025-02-19T07:56:23Z) - The Return of Pseudosciences in Artificial Intelligence: Have Machine Learning and Deep Learning Forgotten Lessons from Statistics and History? [0.304585143845864]
We argue that the designers and final users of these ML methods have forgotten a fundamental lesson from statistics.
We argue that current efforts to make AI models more ethical by merely reducing biases in the training data are insufficient.
arXiv Detail & Related papers (2024-11-27T08:23:23Z) - Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance.
The model excelled in tasks requiring intricate reasoning and knowledge integration across various fields.
Overall results indicate significant progress towards artificial general intelligence.
arXiv Detail & Related papers (2024-09-27T06:57:00Z) - Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AI could soon become routine in clinical practice for disease diagnosis, prognosis, treatment planning, and post-treatment surveillance.
Privacy concerns surrounding patient data present a major barrier to the widespread adoption of AI in medical imaging.
Federated Learning (FL) offers a solution that enables organizations to train AI models collaboratively without sharing sensitive data.
arXiv Detail & Related papers (2024-09-24T16:55:32Z) - FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of
Explainable AI Methods [15.073405675079558]
XAI inherently lacks ground-truth explanations, making its automatic evaluation an unsolved problem.
We propose a novel synthetic vision dataset, named FunnyBirds, and accompanying automatic evaluation protocols.
Using our tools, we report results for 24 different combinations of neural models and XAI methods.
arXiv Detail & Related papers (2023-08-11T17:29:02Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Algebraic Learning: Towards Interpretable Information Modeling [0.0]
This thesis addresses the issue of interpretability in general information modeling and endeavors to ease the problem from two scopes.
Firstly, a problem-oriented perspective is applied to incorporate knowledge into modeling practice, where interesting mathematical properties emerge naturally.
Secondly, given a trained model, various methods could be applied to extract further insights about the underlying system.
arXiv Detail & Related papers (2022-03-13T15:53:39Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.