Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
- URL: http://arxiv.org/abs/2211.09321v2
- Date: Tue, 2 Apr 2024 00:33:42 GMT
- Title: Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
- Authors: Yang Yang, Hongjian Sun, Jialei Gong, Di Yu,
- Abstract summary: featMAP preserves source features by embedding them in low-dimensional embedding space.
We apply featMAP to interpreting digit classification, object detection and MNIST adversarial examples.
- Score: 6.957709719988906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear dimensionality reduction lacks interpretability due to the absence of source features in low-dimensional embedding space. We propose an interpretable method featMAP to preserve source features by tangent space embedding. The core of our proposal is to utilize local singular value decomposition (SVD) to approximate the tangent space which is embedded to low-dimensional space by maintaining the alignment. Based on the embedding tangent space, featMAP enables the interpretability by locally demonstrating the source features and feature importance. Furthermore, featMAP embeds the data points by anisotropic projection to preserve the local similarity and original density. We apply featMAP to interpreting digit classification, object detection and MNIST adversarial examples. FeatMAP uses source features to explicitly distinguish the digits and objects and to explain the misclassification of adversarial examples. We also compare featMAP with other state-of-the-art methods on local and global metrics.
Related papers
- Thinner Latent Spaces: Detecting dimension and imposing invariance through autoencoder gradient constraints [9.380902608139902]
We show that orthogonality relations within the latent layer of the network can be leveraged to infer the intrinsic dimensionality of nonlinear manifold data sets.
We outline the relevant theory relying on differential geometry, and describe the corresponding gradient-descent optimization algorithm.
arXiv Detail & Related papers (2024-08-28T20:56:35Z) - CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction [0.0]
Dimensionality reduction methods are employed to decrease data dimensionality.
This study introduces a clustering-based approach, namely CBMAP, for dimensionality reduction.
CBMAP aims to preserve both global and local structures, ensuring that clusters in lower-dimensional spaces closely resemble those in high-dimensional spaces.
arXiv Detail & Related papers (2024-04-27T15:44:21Z) - Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
We propose a novel feature-level consistency learning framework named Density-Descending Feature Perturbation (DDFP)
Inspired by the low-density separation assumption in semi-supervised learning, our key insight is that feature density can shed a light on the most promising direction for the segmentation classifier to explore.
The proposed DDFP outperforms other designs on feature-level perturbations and shows state of the art performances on both Pascal VOC and Cityscapes dataset.
arXiv Detail & Related papers (2024-03-11T06:59:05Z) - Supervised Manifold Learning via Random Forest Geometry-Preserving
Proximities [0.0]
We show the weaknesses of class-conditional manifold learning methods quantitatively and visually.
We propose an alternate choice of kernel for supervised dimensionality reduction using a data-geometry-preserving variant of random forest proximities.
arXiv Detail & Related papers (2023-07-03T14:55:11Z) - An Integral Projection-based Semantic Autoencoder for Zero-Shot Learning [0.46644955105516456]
Zero-shot Learning (ZSL) classification categorizes or predicts classes (labels) that are not included in the training set (unseen classes)
Recent works proposed different semantic autoencoder (SAE) models where the encoder embeds a visual feature space into the semantic space and the decoder reconstructs the original visual feature space.
We propose an integral projection-based semantic autoencoder (IP-SAE) where an encoder projects a visual feature space vectord with the semantic space into a latent representation space.
arXiv Detail & Related papers (2023-06-26T12:06:20Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Unveiling The Mask of Position-Information Pattern Through the Mist of
Image Features [75.62755703738696]
Recent studies show that paddings in convolutional neural networks encode absolute position information.
Existing metrics for quantifying the strength of positional information remain unreliable.
We propose novel metrics for measuring (and visualizing) the encoded positional information.
arXiv Detail & Related papers (2022-06-02T17:59:57Z) - Analyzing the Latent Space of GAN through Local Dimension Estimation [4.688163910878411]
style-based GANs (StyleGANs) in high-fidelity image synthesis have motivated research to understand the semantic properties of their latent spaces.
We propose a local dimension estimation algorithm for arbitrary intermediate layers in a pre-trained GAN model.
Our proposed metric, called Distortion, measures an inconsistency of intrinsic space on the learned latent space.
arXiv Detail & Related papers (2022-05-26T06:36:06Z) - Featurized Density Ratio Estimation [82.40706152910292]
In our work, we propose to leverage an invertible generative model to map the two distributions into a common feature space prior to estimation.
This featurization brings the densities closer together in latent space, sidestepping pathological scenarios where the learned density ratios in input space can be arbitrarily inaccurate.
At the same time, the invertibility of our feature map guarantees that the ratios computed in feature space are equivalent to those in input space.
arXiv Detail & Related papers (2021-07-05T18:30:26Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
This work introduces a novel self-enhancement method to harvest accurate object localization maps and object boundaries with only category labels as supervision.
In particular, the proposed Self-Enhancement Maps achieve the state-of-the-art localization accuracy of 54.88% on ILSVRC.
arXiv Detail & Related papers (2020-06-09T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.