論文の概要: Inadmissibility of the corrected Akaike information criterion
- arxiv url: http://arxiv.org/abs/2211.09326v1
- Date: Thu, 17 Nov 2022 04:21:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 17:23:26.010962
- Title: Inadmissibility of the corrected Akaike information criterion
- Title(参考訳): 修正赤宅情報基準の非許容性
- Authors: Takeru Matsuda
- Abstract要約: 補正された赤池情報基準は、期待されるKulback-Leibler誤差の最小分散未バイアス推定器である。
我々は、期待されるクルバック-リーブルの不一致ではなく、クルバック-リーブルの不一致を推定する要因として、その不適応性を示す。
- 参考スコア(独自算出の注目度): 7.99536002595393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For the multivariate linear regression model with unknown covariance, the
corrected Akaike information criterion is the minimum variance unbiased
estimator of the expected Kullback--Leibler discrepancy. In this study, based
on the loss estimation framework, we show its inadmissibility as an estimator
of the Kullback--Leibler discrepancy itself, instead of the expected
Kullback--Leibler discrepancy. We provide improved estimators of the
Kullback--Leibler discrepancy that work well in reduced-rank situations and
examine their performance numerically.
- Abstract(参考訳): For the multivariate linear regression model with unknown covariance, the corrected Akaike information criterion is the minimum variance unbiased estimator of the expected Kullback--Leibler discrepancy. In this study, based on the loss estimation framework, we show its inadmissibility as an estimator of the Kullback--Leibler discrepancy itself, instead of the expected Kullback--Leibler discrepancy. We provide improved estimators of the Kullback--Leibler discrepancy that work well in reduced-rank situations and examine their performance numerically.
関連論文リスト
- Statistical Barriers to Affine-equivariant Estimation [10.077727846124633]
本研究では,ロバスト平均推定のためのアフィン同変推定器の定量的性能について検討する。
古典的推定器は定量的に準最適であるか、あるいは量的保証が欠如していることが分かる。
我々は、下界にほぼ一致する新しいアフィン同変推定器を構築する。
論文 参考訳(メタデータ) (2023-10-16T18:42:00Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
MDP上の分布によって引き起こされる値の分散を特徴付けることに重点を置いている。
従来の作業は、いわゆる不確実性ベルマン方程式を解くことで、値よりも後方の分散を境界にしている。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式を提案する。
論文 参考訳(メタデータ) (2023-02-24T09:18:27Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
少数派集団のパフォーマンスは、カバー範囲を減らしながら低下する場合もある。
満足度基準を満たす特徴を構築できれば、そのような望ましくない行動は避けられることを示す。
論文 参考訳(メタデータ) (2021-10-28T19:05:12Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
Errors-in-Variablesの概念がベイズ的深部回帰においてどのように利用できるかを示す。
様々なシミュレートされた実例に沿ったアプローチについて論じる。
論文 参考訳(メタデータ) (2021-05-19T12:37:02Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z) - Calibration of Model Uncertainty for Dropout Variational Inference [1.8065361710947976]
本稿では,モデルの不確実性を再検討するために,異なるロジットスケーリング手法を拡張し,変動予測をドロップアウトに拡張する。
実験の結果,ロジットスケーリングはUCEによる誤校正を著しく低減することがわかった。
論文 参考訳(メタデータ) (2020-06-20T14:12:55Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。