Planning Irregular Object Packing via Hierarchical Reinforcement
Learning
- URL: http://arxiv.org/abs/2211.09382v1
- Date: Thu, 17 Nov 2022 07:16:37 GMT
- Title: Planning Irregular Object Packing via Hierarchical Reinforcement
Learning
- Authors: Sichao Huang, Ziwei Wang, Jie Zhou, and Jiwen Lu
- Abstract summary: We propose a deep hierarchical reinforcement learning approach to plan packing sequence and placement for irregular objects.
We show that our approach can pack more objects with less time cost than the state-of-the-art packing methods of irregular objects.
- Score: 85.64313062912491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object packing by autonomous robots is an im-portant challenge in warehouses
and logistics industry. Most conventional data-driven packing planning
approaches focus on regular cuboid packing, which are usually heuristic and
limit the practical use in realistic applications with everyday objects. In
this paper, we propose a deep hierarchical reinforcement learning approach to
simultaneously plan packing sequence and placement for irregular object
packing. Specifically, the top manager network infers packing sequence from six
principal view heightmaps of all objects, and then the bottom worker network
receives heightmaps of the next object to predict the placement position and
orientation. The two networks are trained hierarchically in a self-supervised
Q-Learning framework, where the rewards are provided by the packing results
based on the top height , object volume and placement stability in the box. The
framework repeats sequence and placement planning iteratively until all objects
have been packed into the box or no space is remained for unpacked items. We
compare our approach with existing robotic packing methods for irregular
objects in a physics simulator. Experiments show that our approach can pack
more objects with less time cost than the state-of-the-art packing methods of
irregular objects. We also implement our packing plan with a robotic
manipulator to show the generalization ability in the real world.
Related papers
- Embodied Instruction Following in Unknown Environments [66.60163202450954]
We propose an embodied instruction following (EIF) method for complex tasks in the unknown environment.
We build a hierarchical embodied instruction following framework including the high-level task planner and the low-level exploration controller.
For the task planner, we generate the feasible step-by-step plans for human goal accomplishment according to the task completion process and the known visual clues.
arXiv Detail & Related papers (2024-06-17T17:55:40Z) - Convolutional Occupancy Models for Dense Packing of Complex, Novel
Objects [75.54599721349037]
We present a fully-convolutional shape completion model, F-CON, that can be easily combined with off-the-shelf planning methods for dense packing in the real world.
We also release a simulated dataset, COB-3D-v2, that can be used to train shape completion models for real-word robotics applications.
Finally, we equip a real-world pick-and-place system with F-CON, and demonstrate dense packing of complex, unseen objects in cluttered scenes.
arXiv Detail & Related papers (2023-07-31T19:08:16Z) - PlanT: Explainable Planning Transformers via Object-Level
Representations [64.93938686101309]
PlanT is a novel approach for planning in the context of self-driving.
PlanT is based on imitation learning with a compact object-level input representation.
Our results indicate that PlanT can focus on the most relevant object in the scene, even when this object is geometrically distant.
arXiv Detail & Related papers (2022-10-25T17:59:46Z) - SafePicking: Learning Safe Object Extraction via Object-Level Mapping [19.502587411252946]
We present a system, SafePicking, that integrates object-level mapping and learning-based motion planning.
Planning is done by learning a deep Q-network that receives observations of predicted poses and a depth-based heightmap to output a motion trajectory.
Our results show that the observation fusion of poses and depth-sensing gives both better performance and robustness to the model.
arXiv Detail & Related papers (2022-02-11T18:55:10Z) - Long-Horizon Manipulation of Unknown Objects via Task and Motion
Planning with Estimated Affordances [26.082034134908785]
We show that a task-and-motion planner can be used to plan intelligent behaviors even in the absence of a priori knowledge regarding the set of manipulable objects.
We demonstrate that this strategy can enable a single system to perform a wide variety of real-world multi-step manipulation tasks.
arXiv Detail & Related papers (2021-08-09T16:13:47Z) - A Long Horizon Planning Framework for Manipulating Rigid Pointcloud
Objects [25.428781562909606]
We present a framework for solving long-horizon planning problems involving manipulation of rigid objects.
Our method plans in the space of object subgoals and frees the planner from reasoning about robot-object interaction dynamics.
arXiv Detail & Related papers (2020-11-16T18:59:33Z) - PackIt: A Virtual Environment for Geometric Planning [68.79816936618454]
PackIt is a virtual environment to evaluate and potentially learn the ability to do geometric planning.
We construct a set of challenging packing tasks using an evolutionary algorithm.
arXiv Detail & Related papers (2020-07-21T22:51:17Z) - A Generalized Reinforcement Learning Algorithm for Online 3D Bin-Packing [7.79020719611004]
We propose a Deep Reinforcement Learning (Deep RL) algorithm for solving the online 3D bin packing problem.
The focus is on producing decisions that can be physically implemented by a robotic loading arm.
We show that the RL-based method outperforms state-of-the-art online bin packings in terms of empirical competitive ratio and volume efficiency.
arXiv Detail & Related papers (2020-07-01T13:02:04Z) - Latent Space Roadmap for Visual Action Planning of Deformable and Rigid
Object Manipulation [74.88956115580388]
Planning is performed in a low-dimensional latent state space that embeds images.
Our framework consists of two main components: a Visual Foresight Module (VFM) that generates a visual plan as a sequence of images, and an Action Proposal Network (APN) that predicts the actions between them.
arXiv Detail & Related papers (2020-03-19T18:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.