OPA-Pack: Object-Property-Aware Robotic Bin Packing
- URL: http://arxiv.org/abs/2505.13339v1
- Date: Mon, 19 May 2025 16:48:14 GMT
- Title: OPA-Pack: Object-Property-Aware Robotic Bin Packing
- Authors: Jia-Hui Pan, Yeok Tatt Cheah, Zhengzhe Liu, Ka-Hei Hui, Xiaojie Gao, Pheng-Ann Heng, Yun-Hui Liu, Chi-Wing Fu,
- Abstract summary: This paper presents OPA-Pack, the first framework that equips the robot with object property considerations in planning the object packing.<n>Also, we formulate OPA-Net, aiming to jointly separate incompatible object pairs and reduce pressure on fragile objects, while compacting the packing.<n> Experimental results manifest that OPA-Pack greatly improves the accuracy of separating incompatible object pairs and largely reduces pressure on fragile objects.
- Score: 99.93418592774326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic bin packing aids in a wide range of real-world scenarios such as e-commerce and warehouses. Yet, existing works focus mainly on considering the shape of objects to optimize packing compactness and neglect object properties such as fragility, edibility, and chemistry that humans typically consider when packing objects. This paper presents OPA-Pack (Object-Property-Aware Packing framework), the first framework that equips the robot with object property considerations in planning the object packing. Technical-wise, we develop a novel object property recognition scheme with retrieval-augmented generation and chain-of-thought reasoning, and build a dataset with object property annotations for 1,032 everyday objects. Also, we formulate OPA-Net, aiming to jointly separate incompatible object pairs and reduce pressure on fragile objects, while compacting the packing. Further, OPA-Net consists of a property embedding layer to encode the property of candidate objects to be packed, together with a fragility heightmap and an avoidance heightmap to keep track of the packed objects. Then, we design a reward function and adopt a deep Q-learning scheme to train OPA-Net. Experimental results manifest that OPA-Pack greatly improves the accuracy of separating incompatible object pairs (from 52% to 95%) and largely reduces pressure on fragile objects (by 29.4%), while maintaining good packing compactness. Besides, we demonstrate the effectiveness of OPA-Pack on a real packing platform, showcasing its practicality in real-world scenarios.
Related papers
- Understanding Physical Properties of Unseen Deformable Objects by Leveraging Large Language Models and Robot Actions [4.606734972599561]
Handling unseen objects with special properties such as deformability is challenging for traditional task and motion planning approaches.<n>Recent results in Large Language Models (LLMs) based task planning have shown the ability to reason about unseen objects.<n>We propose an LLM-based method for probing the physical properties of unseen deformable objects for the purpose of task planning.
arXiv Detail & Related papers (2025-06-04T09:25:12Z) - Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection [54.78470057491049]
Occupancy has emerged as a promising alternative for 3D scene perception.<n>We introduce object-centric occupancy as a supplement to object bboxes.<n>We show that our occupancy features significantly enhance the detection results of state-of-the-art 3D object detectors.
arXiv Detail & Related papers (2024-12-06T16:12:38Z) - PickScan: Object discovery and reconstruction from handheld interactions [99.99566882133179]
We develop an interaction-guided and class-agnostic method to reconstruct 3D representations of scenes.
Our main contribution is a novel approach to detecting user-object interactions and extracting the masks of manipulated objects.
Compared to Co-Fusion, the only comparable interaction-based and class-agnostic baseline, this corresponds to a reduction in chamfer distance of 73%.
arXiv Detail & Related papers (2024-11-17T23:09:08Z) - An Object SLAM Framework for Association, Mapping, and High-Level Tasks [12.62957558651032]
We present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks.
A range of public datasets and real-world results have been used to evaluate the proposed object SLAM framework for its efficient performance.
arXiv Detail & Related papers (2023-05-12T08:10:14Z) - Planning Irregular Object Packing via Hierarchical Reinforcement
Learning [85.64313062912491]
We propose a deep hierarchical reinforcement learning approach to plan packing sequence and placement for irregular objects.
We show that our approach can pack more objects with less time cost than the state-of-the-art packing methods of irregular objects.
arXiv Detail & Related papers (2022-11-17T07:16:37Z) - Point-to-Box Network for Accurate Object Detection via Single Point
Supervision [51.95993495703855]
We introduce a lightweight alternative to the off-the-shelf proposal (OTSP) method.
P2BNet can construct an inter-objects balanced proposal bag by generating proposals in an anchor-like way.
The code will be released at COCO.com/ucas-vg/P2BNet.
arXiv Detail & Related papers (2022-07-14T11:32:00Z) - SafePicking: Learning Safe Object Extraction via Object-Level Mapping [19.502587411252946]
We present a system, SafePicking, that integrates object-level mapping and learning-based motion planning.
Planning is done by learning a deep Q-network that receives observations of predicted poses and a depth-based heightmap to output a motion trajectory.
Our results show that the observation fusion of poses and depth-sensing gives both better performance and robustness to the model.
arXiv Detail & Related papers (2022-02-11T18:55:10Z) - ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level
Ellipsoid and Signed Distance Function Description [9.734266860544663]
This paper proposes an expressive yet compact model for joint object pose and shape optimization.
It infers an object-level map from multi-view RGB-D camera observations.
Our approach is evaluated on the large-scale real-world ScanNet dataset and compared against state-of-the-art methods.
arXiv Detail & Related papers (2021-08-01T03:07:31Z) - TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and
Reconstruction [57.1209039399599]
We propose a map representation that allows maintaining a single volume for the entire scene and all the objects therein.
In a multiple dynamic object tracking and reconstruction scenario, our representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity.
We evaluate the proposed TSDF++ formulation on a public synthetic dataset and demonstrate its ability to preserve reconstructions of occluded surfaces when compared to the standard TSDF map representation.
arXiv Detail & Related papers (2021-05-16T16:15:05Z) - Object-Driven Active Mapping for More Accurate Object Pose Estimation
and Robotic Grasping [5.385583891213281]
The framework is built on an object SLAM system integrated with a simultaneous multi-object pose estimation process.
By combining the mapping module and the exploration strategy, an accurate object map that is compatible with robotic grasping can be generated.
arXiv Detail & Related papers (2020-12-03T09:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.