Site-dependent control of polaritons in the Jaynes Cummings Hubbard
model with trapped ions
- URL: http://arxiv.org/abs/2211.09400v1
- Date: Thu, 17 Nov 2022 08:20:54 GMT
- Title: Site-dependent control of polaritons in the Jaynes Cummings Hubbard
model with trapped ions
- Authors: Silpa Muralidharan, Kenji Toyoda
- Abstract summary: We demonstrate the site-dependent control of polaritons in the Jaynes Cummings Hubbard (JCH) model with trapped ions.
A JCH system consisting of polaritons in a large number of ion sites can be considered an artificial many-body system of interacting particles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We demonstrate the site-dependent control of polaritons in the Jaynes
Cummings Hubbard (JCH) model with trapped ions. In a linear ion crystal under
illumination by optical beams nearly resonant to the red-sideband (RSB)
transition for the radial vibrational direction, quasiparticles called
polaritonic excitations or polaritons, each being a superposition of one
internal excitation and one vibrational quantum (phonon), can exist as
conserved particles. Polaritons can freely hop between ion sites in a
homogeneous configuration, while their motion can be externally controlled by
modifying the parameters for the optical beams site-dependently. We demonstrate
the blockade of polariton hopping in a system of two ions by the individual
control of the frequency of the optical beams illuminating each ion. A JCH
system consisting of polaritons in a large number of ion sites can be
considered an artificial many-body system of interacting particles and the
technique introduced here can be used to exert fine local control over such a
system, enabling detailed studies of both its quasi-static and dynamic
properties.
Related papers
- State-dependent control of the motional modes of trapped ions using an integrated optical lattice [0.0]
We use a single ion to map the optical potential landscape over many periods of the standing-wave field.
We observe a state-dependent trap-frequency shift of $2pitimes 3.33(4)$ kHz, corresponding to a bare optical potential of $2pitimes 76.8(5)$ kHz for the electronic ground state.
arXiv Detail & Related papers (2024-11-05T17:55:35Z) - Collective rovibronic dynamics of a diatomic gas coupled by cavity [0.0]
We consider an ensemble of homonuclear diatomic molecules coupled to the two polarization directions of a Fabry-P'erot cavity.
We identify a coupling mechanism mediated simultaneously by the two perpendicular polarizations, and inducing polaritonic relaxation towards molecular rotations.
Our simulations indicate that the molecular rotational dynamics in gas-phase cavity-coupled systems can serve as a novel probe for non-radiative polaritonic decay towards the dark-states manifold.
arXiv Detail & Related papers (2024-01-19T14:35:35Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Chiral polaritons based on achiral Fabry-Perot cavities using apparent
circular dichroism [0.0]
Polariton states with high levels of chiral dissymmetry offer exciting prospects for quantum information, sensing, and lasing applications.
Here, we theoretically demonstrate how chiral polaritons can be realized by combining (high quality factor) achiral Fabry-Perot cavities with samples exhibiting a phenomenon known as "apparent circular dichroism" (ACD)
By introducing a quantum electrodynamical theory of ACD, we identify the design rules based on which the dissymmetry of chiral polaritons can be optimized.
arXiv Detail & Related papers (2022-08-30T18:00:02Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - Thermally induced entanglement of atomic oscillators [0.0]
Laser cooled ions trapped in a linear Paul trap are long-standing ideal candidates for realizing quantum simulation.
A pair of ions interacting in such traps exchange vibrational quanta through the Coulomb interaction.
Driven by thermal energy, the nonlinear interaction autonomously and unconditionally generates entanglement between the mechanical modes of the ions.
arXiv Detail & Related papers (2021-07-05T11:15:06Z) - Evaluating states in trapped ions with local correlation between
internal and motional degrees of freedom [0.0]
We propose and demonstrate a scalable scheme for the simultaneous determination of internal and motional states in trapped ions with single-site resolution.
The scheme is applied to the study of polaritonic excitations in the Jaynes- Cummings Hubbard model with trapped ions.
arXiv Detail & Related papers (2021-05-11T03:48:35Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.